Mathematical contest in modeling

try something new

Posted by Doraemon on September 8, 2024

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
\documentclass[12pt]{article}
\usepackage{ctex}                % 支持中文
\usepackage{amsmath, amssymb}    % 数学公式
\usepackage{amsmath}  % 需要加载amsmath宏包
\usepackage{graphicx}            % 插入图片
\usepackage{geometry}            % 页面设置
\usepackage{booktabs}            % 表格横线
\usepackage{caption}             % 图片和表格标题
\usepackage{fancyhdr}            % 页眉页脚
\usepackage{hyperref}            % 超链接
\usepackage{titling}  % 控制标题和页首距离
\usepackage{titlesec}  % 调整标题样式
\usepackage{lipsum}   % 生成示例文本
\usepackage{float}
\geometry{a4paper, scale=0.8}

% 修改章节编号为中文 "一、二、三……"
\renewcommand{\thesection}{\chinese{section}、}

% 保留子节为数字格式 "1.1, 1.2"
\renewcommand{\thesubsection}{\arabic{section}.\arabic{subsection}}

\usepackage{titlesec}

% 设置大标题居中,并减小编号与标题文本之间的距离
\titleformat{\section}
  {\centering\Large\bfseries}  % 标题格式,居中
  {\thesection}                % 编号格式
  {0.01em}                      % 调整编号与标题文本之间的距离
  {}


% 页眉页脚设置
%\pagestyle{fancy}
%\fancyhead[L]{}
%\fancyhead[C]{}
%\fancyhead[R]{}
\fancyfoot[C]{\thepage}

% 设置标题与页首的距离
\setlength{\droptitle}{-2cm}  % 这里的值可以根据需要调整
% 设置标题与摘要之间的距离
%\setlength{\belowtitleskip}{0.5cm}  % 减少标题下方的距离
%\setlength{\abstitleskip}{0.5cm}    % 摘要上方的距离
%\setlength{\absparskip}{0.2cm}      % 摘要和段落的距离


% 调整大标题的字体大小
\titleformat{\title}{\normalfont\Large\bfseries}{\thetitle}{0.5em}{}
% 论文标题、作者和日期
\title{\heiti “板凳龙”等距螺线链式求解模型}
\date{}

\begin{document}

% 封面
\maketitle

\vspace{-3.7cm}  % 这里调整为适当的负值以减少间距

\begin{abstract}
   
本文针对“板凳龙”运动过程,分别建立了\textbf{几何模型}和\textbf{动力学模型},\textbf{链式求解}舞龙队各节板凳在螺线盘入过程中的空间位置和速度分布。通过\textbf{碰撞检测模型},确定了舞龙队盘入过程中发生碰撞的时间和位置。随后,基于\textbf{几何约束条件},优化了螺距和调头路径,并通过\textbf{数值方法}求解了龙头的最大速度,确保各节板凳不超过速度限制。本研究通过精确的数值求解与优化方法,解决了舞龙队在有限空间内盘龙时的调头和速度控制问题,为类似文化活动的模型分析提供了理论依据。

针对问题一,本文建立了\textbf{几何模型}与\textbf{动力学模型},分析了龙头以恒定速度沿螺线运动时各节板凳的空间位置与速度分布。首先,利用极坐标系构建螺线方程,从龙头的前把手出发,通过\textbf{二分法}探测相邻结点的位置关系,然后通过\textbf{链式求解法}模拟了各节板凳的运动状态,再根据\textbf{运动的关联性},对速度进行分解,获得了各节板凳在0 - 300s内不同时间的精确位置和速度变化,结果保存在支撑材料的“result1.xlsx”文件中。通过微分几何方法分析,确保了模型的精确性,为后续的运动模拟和优化提供了理论依据。

针对问题二,舞龙队在第一问的基础上沿着螺距为55cm的等距螺线继续运动,根据问题一中给定的\textbf{螺旋线参数},利用\textbf{极坐标方程}描述舞龙队各节板凳的中心和边缘位置,然后通过\textbf{碰撞测试模型},研究了舞龙队盘入至板凳之间发生碰撞前的终止时刻,经过推算\textbf{终止时刻$t$为412.42s}。利用\textbf{链式求解法}计算了舞龙队各把手在该时刻的位置和速度,最终得出盘入过程的终止条件,相关数据保存在支撑材料的“result2.xlsx”文件中。

针对问题三,在调头空间为直径 9 米的圆形区域内,首先采用\textbf{数值求解法},用计算机枚举不同的螺距值,并逐步缩小范围。假定龙头的前把手恰好位于调头空间与螺线的交点处,此时采用\textbf{回溯法},计算出所有把手的位置坐标。再通过\textbf{碰撞测试模型}依次判断板凳是否会发生碰撞,若在该螺距条件下恰好通过碰撞测试,则确定该螺距为舞龙队能够顺利调头所需的最小螺距。经过推算得到\textbf{最小螺距为0.46m}。

针对问题四,研究舞龙队在调头空间内的调头路径优化问题。舞龙队沿螺距为 1.7 m 的螺线盘入,在直径为 9 m 的调头空间内进行调头。通过建立\textbf{几何模型}和\textbf{运动学模型},确定了舞龙队在调头空间内的调头路径。
%调头路径由两段圆弧组成,前一段圆弧的半径为后一段的两倍。%为缩短调头路径,采用优化算法调整了圆弧的半径和位置,使其在保持各部分相切的情况下缩短了调头曲线。
对龙头位于不同曲线中的多种情况进行分类讨论,再通过精确的\textbf{数值计算},得到了从 -100 秒至 100 秒各时刻舞龙队的具体位置和速度,结果存放在支撑材料的“result4.xlsx” 文件中。
%同时,我们在论文中列出了 -100 秒、-50 秒、0 秒、50 秒和 100 秒时的关键位置和速度。

针对问题五,在问题四所得路径的基础上,进一步研究了龙头行进速度对舞龙队行进速度的影响。为确保舞龙队各把手的速度均不超过 2 m/s,我们利用\textbf{速度微小增量检测模型}对各把手的速度进行了监控,并计算出了龙头的最大行进速度。经过推算得出\textbf{龙头最大行进速度为1.09m/s}。

    \textbf{关键词:} 等距螺线链式求解模型,几何模型,动力学模型,碰撞检测模型
\end{abstract}


\section{问题重述}
\subsection{问题背景}
随着当今社会对文化活动与传统技艺的重视,舞龙作为中华传统文化的重要表现形式之一。板凳龙作为一种独特的舞龙形式,如何优化板凳龙的运动路径、避免队伍间的碰撞、以及提升表演的流畅性与安全性,仍是亟待解决的问题。本题给出舞龙队的组成和结构,模拟板凳沿等距螺线盘入盘出的过程,通过合理的路径规划与速度控制,使其在复杂场景中保持安全、流畅的运动。因此,研究板凳龙的运动模型,并通过优化各节板凳的运动状态,不仅具有文化价值,也具备重要的实际意义。

\subsection{问题提出}
本题研究对象为沿着等距螺旋线行进的板凳龙,通过路径规划和碰撞检测优化各节板凳的运动状态,从而提高舞龙队的安全性和观赏性。

\textbf{问题一} 舞龙队沿着螺距为55cm的等距螺线顺时针盘入,所有把手中心均位于螺线上。在运动过程中, 龙头前把手以1m/s的速度前进,带动后面相连的龙身依次向前运动。初始时龙头前把手位于螺线第16圈的A点。从初始时刻运动至300秒,,要求求得龙头、龙身和龙尾每一秒的位置和速度。

\textbf{问题二} 舞龙队沿问题一设定的螺线盘入,运动到一定时刻,由于螺距、板凳宽度的限制条件,龙头会与龙身发生碰撞,此时运动停止,需确定此时运动的时间,并求出此时龙头、龙身以及龙尾的位置以及速度。

\textbf{问题三} 舞龙队从顺时针盘入到逆时针盘出需要经过一个直径为9米的圆形调头空间,确保在所有板凳满足约束条件的情况下,计算龙头前把手沿螺线盘入至调头空间边界所需的最小螺距,以保证能够顺利进入调头空间。

\textbf{问题四} 本题研究舞龙队在调头空间内的调头路径优化问题。舞龙队在调头空间内完成调头,路径为两段相切的圆弧构成的 S 形曲线,前一段圆弧的半径是后一段的两倍,且与盘入、盘出螺线相切。分析是否可以调整圆弧,仍保持各部分相切,但缩短调头曲线的长度。优化调头曲线并计算舞龙队在调头前后的每秒位置和速度。

\textbf{问题五} 在问题四确定路径的基础上,需要加快龙头行进速度,在整个运动过程中,龙头行进速度仍保持不变,要求求出在运动过程中,舞龙队各把手的速度均不超过2m/s的情况下,龙头的最大行进速度。


\section{问题分析}
\subsection{对问题一的分析}
问题一可以看作是一个由多个相连的刚性体组成的\textbf{链状系统},每个节点的运动状态都可以由其前一节点的运动决定。选择二维平面直角坐标系,以螺线中心为原点建立坐标系,利用\textbf{螺线极坐标方程}( $r = a + b\theta$)来描述每个节点(龙头、龙身和龙尾)在盘入过程中位置的变化。问题一的难点在于准确反映舞龙队整体的耦合运动,首先采用\textbf{微元法},将时间进行微分,每个微元时间内物体运动轨迹近似为圆,求出每个时刻龙头的位置,然后通过\textbf{链式求解法}和\textbf{二分法},根据板凳长度限制确定每一节板凳的后一节板凳位置,由此确定所有把手坐标,最后根据位置关系和\textbf{运动的关联性},相连板凳之间的实际速度沿着板凳方向的分速度相等,由此确定所有把手在各个时刻的速度。

\subsection{对问题二的分析}
问题二要求确定舞龙队在问题一设定的螺线盘入过程中,能够继续盘入而不发生板凳之间碰撞的终止时刻。终止时刻确定后,需要记录此时龙头、龙身和龙尾的各个把手位置和速度。问题二的核心难点在于,随着舞龙队在螺线上盘入,板凳之间的相对距离会逐渐缩短。由于龙头长度大于其他板凳,盘入到一定程度后,龙头与其他板凳可能发生碰撞。因此,准确计算此时刻并避免板凳相互碰撞是本问题的关键。根据问题一中给定的\textbf{螺旋线参数},在笛卡尔坐标系下描述舞龙队各节板凳的中心和边缘位置,在确定龙头位置坐标后,通过\textbf{链式求解法}求出该时刻各把手的位置,根据板凳的几何结构及其在螺旋线上的分布,可以建立\textbf{碰撞测试模型},判定龙头与其他板凳是否发生碰撞,发生碰撞的最早时刻即为所求。

\subsection{对问题三的分析}
问题三要求舞龙队由顺时针盘入切换为逆时针盘出,并需要一定的调头空间。调头空间为以螺线中心为圆心、直径为9米的圆形区域,需要确定最小螺距,使得龙头前把手能够沿着相应的螺线盘入到调头空间的边界。本问题的主要难点在于如何根据螺旋线的几何性质和板凳之间的约束条件确定最小螺距,使得舞龙队能够在有限的调头空间内顺利完成盘入并调头。我们采用\textbf{数值方法}枚举不同的螺距,并逐步缩小测试范围,假定龙头的前把手恰好位于调头空间与螺线的交点处,采用\textbf{回溯法}倒推其他板凳的位置坐标,再利用第二题的\textbf{碰撞测试模型},检测龙头与其他板凳是否会发生碰撞。

\subsection{对问题四的分析}
问题四要求舞龙队在问题三给出的调头空间内完成调头,路径为两段相切的圆弧构成的 S 形曲线,前一段圆弧的半径是后一段的两倍,且与盘入、盘出螺线相切。我们选取\textbf{临界状态}即龙头的前把手恰好进入调头空间进行分析,确定了舞龙队的调头轨迹。问题四的难点在于整个舞龙队的运动轨迹是由多条复杂的平滑曲线拼接而成,当相邻把手处在不同的曲线上时,速度关联选取的曲线方程不同会增加求解复杂性。舞龙队在求出的路径下进行运动,根据龙头在调头轨迹中的不同位置进行分类讨论,利用\textbf{链式求解模型},求出各把手的位置和速度。在该调头曲线上求解调头前后100s各个把手的位置和速度。

\subsection{对问题五的分析}
针对问题五,在问题四的基础上,进一步研究了龙头行进速度对舞龙队行进速度的影响。为确保舞龙队各把手的速度均不超过 2 m/s,我们利用\textbf{速度微小增量检测模型},在原有1m/s行进速度的基础上,逐步增加龙头速度,然后对各把手的速度进行了监控,直到存在把手速度超过限制条件的情况为止,此时龙头行进速度为最大行进速度。


\section{模型假设}
1.所有板凳被视为刚性物体,不考虑板凳在运动或连接过程中的弹性形变。

2.假设所有板凳的长度、宽度和孔的位置均为固定值,不会因外力或其他因素发生变化。

3.把手的连接是理想的,不考虑连接点的松动、磨损或因力矩过大而引起的断裂或偏移。

4.假设在运动过程中,所有板凳保持在同一平面上,并且板凳之间的相对位置关系保持不变。

5.假设在运动过程中,所有把手中心均落在螺旋线上,不考虑复杂的曲线或摆动情况。

6.假设每一节板凳的速度是其前一节板凳速度的线性或非线性函数,保持平稳传导。

7.假设在板凳龙的调头或转弯过程中,速度变化是平滑的,没有突然的加速或减速现象。各节板凳的速度在曲线段之间保持连续可导的变化。


\section{符号说明}
\begin{table}[H]
\centering
%\caption{符号说明}
\begin{tabular}{ccc}
\toprule
符号 & 说明 & 单位 \\
\midrule
$l_{width}$ & 板凳的宽度 & m \\
$l_{head}$ & 龙头的长度 & m \\
$l_{body}$ & 龙身的长度 & m \\
$l_{tail}$ & 龙尾的长度 & m \\
$l_{dist}$ & 前(后)把手到板凳前(后)的距离 & m \\
$l_{fg}$ & 弧长FG & m \\
$d_h$ & 孔径 & m \\
$d_1$ & 碰撞点到把手连线的距离 & m \\
$d_2$ & 碰撞点到把手连线中垂线的距离 & m \\
$r$ & 极径 & m \\
$b$ & 螺距 & m \\
$R$ & 调头空间的半径 & m \\
$r_1$ & 大圆弧的半径 & m \\
$r_2$ & 小圆弧半径 & m \\
$t$ & 运动时间 & s \\
$v_h$ & 龙头的速度 & m/s \\
$v_{max}$ & 龙头的最大速度 & m/s \\
$v_i$ & 每节板凳的最大速度速度 & m/s \\
$\theta$ & 极角 & rad \\
$\alpha$ & A点速度方向与板凳方向的夹角&  rad \\
$\beta$ & B点速度方向与板凳方向的夹角 & rad \\
$\gamma$ &圆心角  & rad \\


\bottomrule
\end{tabular}
\end{table}

\section{模型建立与求解}

\subsection{问题一模型的建立与求解}

\subsubsection{模型的建立}
根据问题,构建链式求解模型。首先,以螺线中心为原点建立坐标系,
\begin{eqnarray}
r & = & \frac{b}{2\pi}\theta  
\end{eqnarray}
其中,$b$为螺距,$r$为极径,$\theta$为极角。

采用\textbf{微元法}对时间微分,在$\Delta$t时间内,龙头的角度改变量为 
\begin{eqnarray}
\Delta \theta & = & \frac{v_h*\Delta t}{r} 
\end{eqnarray}

此时极角和极径分别为
\begin{eqnarray}
\theta_1 & = & \theta -\Delta \theta 
\end{eqnarray}
\begin{eqnarray}
r_1 & = & \frac{b}{2\pi}\theta_1 
\end{eqnarray}

由此确定了龙头的位置坐标,再根据板凳长度限制采用\textbf{二分法}确定每一节板凳后一节的位置,链式解出所有把手任意时刻的位置坐标。
\begin{figure}[h]
    \centering
    \includegraphics[width=1.0\textwidth]{img/3.png}  % 替换为你的图片文件名
    \caption{二分法演示}
    \label{fig:er}
\end{figure}


对任意板凳上的前后两个把手的中心A,B分析,由\textbf{运动的关联性},A,B实际速度沿着板凳方向的分速度相等,由此\textbf{链式}解出所有把手的任意时刻的速度大小。

A,B两点连线的斜率$k$为
\begin{eqnarray}
k & = & \frac{y_A-y_B}{x_A-x_B} 
\end{eqnarray}

A点处切线斜率$k_a$为
\begin{equation}
\begin{cases}
x_A = x(\theta) \\
y_A = y(\theta) 
\end{cases}
\label{eq:system}
\end{equation}

\begin{eqnarray}
k_a & = & \frac{\mathrm{d} y_A}{\mathrm{d} x_A}
\end{eqnarray}

设A点实际速度的方向与AB连线方向的夹角为$\alpha$,则
\begin{eqnarray}
\tan \alpha = \frac{k-k_a}{1+k*k_a} 
\end{eqnarray}

同理得,B点实际速度的方向与AB连线方向的夹角$\beta$为
\begin{eqnarray}
\tan \beta = \frac{k_b-k}{1+k*k_b} 
\end{eqnarray}

\begin{figure}[H]
    \centering
    \includegraphics[width=0.7\textwidth]{img/2.jpg}  % 插入图片
    \caption{关联速度}
    \label{fig:dragon}
\end{figure}
由A,B沿板凳方向的分速度相等建立等式
\begin{eqnarray}
v_a\cos \alpha =v_b\cos \beta 
\end{eqnarray}

已知龙头的速度始终为1m/s,由运动的关联性链式即可解出所有把手任意时刻的速度大小。

\subsubsection{结果呈现}
将题目所给参数带入模型后,运行结果保存在支撑材料的“result1.xlsx”文件中。0 s、60 s、120 s、180 s、240 s、300 s 时,龙头前把手、龙头后面第 1、51、101、151、201 节龙身前把手和龙尾后把手的位置和速度如下表

% 表 1: 位置结果
\begin{table}[H]
    \centering
    \caption{\quad 位置结果}
    \begin{tabular}{|l|c|c|c|c|c|c|}
        \hline
        & 0 s & 60 s & 120 s & 180 s & 240 s & 300 s \\ \hline
        龙头 x (m)& 8.800000& 5.796937& -4.090647& -2.953271& 2.578989& 4.431352 \\ \hline
        龙头 y (m) &0& -5.773326& -6.300647& -6.300647& 6.099632& 2.298258 \\ \hline
        第1节龙身 x (m) &8.363824 &7.455392 &-1.452245 &-5.229693 &4.810845& 2.480875 \\ \hline
        第1节龙身 y (m)& 2.826544& -3.443277 &-7.404476 &4.368302& -3.575533& 4.389966 \\ \hline
        第51节龙身 x (m) &-9.518732& -8.685393& -5.537882& 2.901004& 5.97061& -6.299132 \\ \hline
        第51节龙身 y (m) &1.341137 &2.543156 &6.382425 &7.244936 &-3.842016 &0.490466 \\ \hline
        第101节龙身 x (m)& 2.913983 &5.684503& 5.356262 &1.887636 &-4.930766 &-6.22425 \\ \hline
        第101节龙身 y (m)& -9.918311& -8.003205& -7.561583& -8.473989& -6.369293 &3.956731 \\ \hline
        第151节龙身 x (m) &10.861726 &6.684755 &2.395454 &1.016482 &2.981406 &7.053565 \\ \hline
        第151节龙身 y (m) &1.828753& 8.132502& 9.725702 &9.42343 &8.393867 &4.371896 \\ \hline
        第201节龙身 x (m) &4.555102 &-6.617082 &-10.626275& -9.292367 &-7.467907& -7.472681 \\ \hline
        第201节龙身 y (m) &10.725118& 9.027433 &1.366694& -4.23626 &-6.167484& -5.243049 \\ \hline
        龙尾(后)x (m) &-5.305444 &7.3621 &10.974821 &7.391946 &3.257137 &1.809236 \\ \hline
        龙尾(后)y (m) &-10.676584& -8.800016 &0.83658& 7.484295& 9.463658& 9.296254 \\ \hline
    \end{tabular}
\end{table}

% 表 2: 速度结果
\begin{table}[H]
    \centering
    \caption{\quad 速度结果}
    \begin{tabular}{|l|c|c|c|c|c|c|}
        \hline
        & 0 s & 60 s & 120 s & 180 s & 240 s & 300 s \\ \hline
        龙头 (m/s) & 1& 1&1 &1 &1 &1 \\ \hline
        第1节龙身 (m/s) &0.999971 &0.999961 &0.999945 &0.999917 &0.999859 & 0.999709\\ \hline
        第51节龙身 (m/s) &0.999742 & 0.999662& 0.999538&0.999331 & 0.998941& 0.998064\\ \hline
        第101节龙身 (m/s) &0.999575 &0.999453 &0.999269 &0.998971 & 0.998435& 0.997301\\ \hline
        第151节龙身 (m/s) & 0.999448&0.999299 & 0.999078&0.998727 &0.998115 & 0.99686\\ \hline
        第201节龙身 (m/s) & 0.999348&0.99918 & 0.998935&0.998551 &0.997893 & 0.996574\\ \hline
        龙尾(后)(m/s) &0.999311 &0.999136 &0.998883 &0.998489 & 0.997816& 0.996477\\ \hline
    \end{tabular}
\end{table}

\subsection{问题二模型的建立与求解}
\subsubsection{模型的建立}
根据问题,构建\textbf{碰撞测试模型},舞龙队沿问题 1 设定的螺线盘入,根据问题一中给定的\textbf{螺旋线参数},在笛卡尔坐标系下表示舞龙队各节板凳的中心和边缘位置,进行\textbf{碰撞检测}。
记发生碰撞时龙头前后把手中心分别落在A,B点,该板凳的四个顶点分别记作C,D,E,F(不妨设C,D为距离A更近的顶点),记与龙头发生碰撞的板凳前后把手中心分别落在P,Q点,过线段PQ中点M作PQ的中垂线MN。

据分析,发生碰撞的板凳可能在C,D,E,F任一点与其他任一板凳碰撞,下面以C点为例建立\textbf{碰撞测试模型},余下的点\textbf{以此类推}。
\begin{figure}[H]
    \centering
    \includegraphics[width=0.7\textwidth]{img/4.png}  % 替换为你的图片文件名
    \caption{碰撞模拟图}
    \label{fig:exameppp}
\end{figure}

首先,在第一问基础上,运用\textbf{微元法},将时间微分求出龙头前把手的坐标,并根据\textbf{速度关联}求出龙头后把手的坐标。

然后,已知前后把手位置坐标,由把手和板凳的相对位置即可确定顶点C的位置

记直线AB的参数方程为
\begin{eqnarray}
y=k*x+b
\end{eqnarray}

由\textbf{几何关系},设直线CE和直线CD的参数方程分别为
\begin{eqnarray}
y=k*x+b_1
\end{eqnarray}
\begin{eqnarray}
y=-\frac{1}{k} *x+b_2
\end{eqnarray}
联立直线CE,CD解出C点坐标$C(x(b_1,b_2),y(b_1,b_2))$

将直线AB化为一般方程,由\textbf{两直线间的距离公式},C点到直线AB的距离为$\frac{1}{2}$$l_{width}$ ,到过A且与AB垂直的直线的距离为$l_{dist}$,由此解出$b_1$,$b_2$,建立了A点到C点的映射。

记直线PQ的参数方程为
\begin{eqnarray}
y=k_1*x+b_1
\end{eqnarray}

记直线MN的参数方程为
\begin{eqnarray}
y=k_2*x+b_2
\end{eqnarray}

下面进行\textbf{碰撞检测},记C点到其他任一板凳两条中心轴线(PQ和MN)的距离分别为$d_1$和$d_2$,则
\begin{align}
d_1=\frac{\left | k_1x_c-y_c+b_1 \right | }{\sqrt{k_1^{2}+1  } }\le \frac{1}{2}d_w  \\
d_2=\frac{\left | k_2x_c-y_c+b_2 \right | }{\sqrt{k_2^{2}+1  } }\le d_l
\end{align}

根据A,B的相对位置关系,存在如下四种碰撞可能性,分析方法如上。
\begin{figure}[H]
    \centering
    \includegraphics[width=0.7\textwidth]{img/5.png}  % 替换为你的图片文件名
    \caption{四种碰撞模拟图}
    \label{fig:examanjanj}
\end{figure}

\subsubsection{结果呈现}
将题目所给参数带入模型后,运行结果保存在支撑材料的“result2.xlsx”文件中。龙头前把手、龙头后面第 1、51、101、151、201 条龙身前把手和龙尾后把手的位置和速度。如下表

% 表 3: 
\begin{table}[H]
    \centering
    %\caption{\quad 速度结果}
    \begin{tabular}{|l|c|c|c|c|c|c|}
        \hline
        & 横坐标(m) & 纵坐标(m) & 速度(m/s)\\ \hline
        龙头  &1.214147 & 1.939922&1 \\ \hline
        第1节龙身  &-1.639979 &1.756715 &0.991547 \\ \hline
        第51节龙身  &1.285945 &4.32508 & 0.976852\\ \hline
        第101节龙身  &-0.541184 & -5.879612& 0.974544\\ \hline
        第151节龙身  &0.963918 &-6.9581 &0.973602 \\ \hline
        第201节龙身  &-7.89387 &-1.225856 & 0.973090\\ \hline
        龙尾(后) &0.961136 &8.322117 &0.972932 \\ \hline
    \end{tabular}
\end{table}

\subsection{问题三模型的建立与求解}
\subsubsection{模型的建立}
根据问题,舞龙队由顺时针盘入切换为逆时针盘出时,需要足够的调头空间。调头空间定义为一个以螺线中心为圆心、直径为9米的圆形区域,求解舞龙队在盘入时的最小螺距,以使得龙头的前把手能够顺利盘入到调头空间的边界。我们采用\textbf{数值方法}进行求解,用计算机枚举不同的螺距值,逐步缩小范围,并利用\textbf{碰撞测试模型}和\textbf{回溯法},从龙头前把手恰好到达掉头空间倒推该螺距下其他板凳的位置,判断舞龙队是否会发生碰撞,直到找到刚好使得龙头前把手到达调头空间边界的最小螺距。
\begin{figure}[H]
    \centering
    \includegraphics[width=0.5\textwidth]{img/3.jpg}  % 替换为你的图片文件名
    \caption{回溯法演示图}
    \label{fig:exampppp}
\end{figure}

\subsubsection{模型的求解}
采用\textbf{数值方法},首先确定一个固定的螺距$b_i$($b_i$通过计算机枚举产生),由此可以推出曲线方程为
\begin{eqnarray}
r_i & = & \frac{b_i}{2\pi}\theta  
\end{eqnarray}
其中,$r_i$为极径,$b_i$为螺距,$\theta$为极角

对任意板凳上的前后两个把手的中心A,B分析,由\textbf{运动的关联性},A,B实际速度沿着板凳方向的分速度相等,由此链式解出所有把手的任意时刻的速度大小。

A,B两点连线的斜率$k$为
\begin{eqnarray}
k & = & \frac{y_A-y_B}{x_A-x_B} 
\end{eqnarray}

A点处切线斜率$k_a$为
\begin{equation}
\begin{cases}
x_A = x(\theta) \\
y_A = y(\theta) 
\end{cases}
\label{eq:system}
\end{equation}

\begin{eqnarray}
k_a & = & \frac{\mathrm{d} y_A}{\mathrm{d} x_A}
\end{eqnarray}

设A点实际速度的方向与AB连线方向的夹角为$\alpha$,则
\begin{eqnarray}
\tan \alpha = \frac{k-k_a}{1+k*k_a} 
\end{eqnarray}

同理得,B点实际速度的方向与AB连线方向的夹角$\beta$为
\begin{eqnarray}
\tan \beta = \frac{k_b-k}{1+k*k_b} 
\end{eqnarray}

由A,B沿板凳方向的分速度相等建立等式
\begin{eqnarray}
v_a\cos \alpha =v_b\cos \beta 
\end{eqnarray}

然后,通过\textbf{链式求解法}推导其他所有把手在该时刻的位置和速度。

在第二问的基础上,对舞龙队进行\textbf{碰撞测试},检查所有边界条件是否满足要求,如果发生碰撞,则微调螺距重复上述操作,直到找到满足要求的\textbf{最小螺距}为止。

经过计算机\textbf{线性探测},根据推算满足要求的\textbf{最小螺距为0.46m}。

\subsection{问题四模型的建立与求解}
\subsubsection{模型的建立}
问题四中,舞龙队需要在一个更加复杂的环境中运动,涉及多重路径、边界条件等其他约束条件。相比前几问,问题四增加了轨迹多样性,要求我们对已有的运动模型进行进一步扩展。

舞龙队沿螺距为 1.7 m 的螺线盘入,在直径为 9 m 的调头空间内进行调头。调头路径由两段圆弧组成,前一段圆弧的半径为后一段的两倍。我们选取\textbf{临界状态}即龙头的前把手恰好进入调头空间进行分析,在该调头曲线上求解调头前后100s各个把手的位置和速度。

我们可以将该模型分成两大部分。第一部分重点在求舞龙队在调头空间里调头的轨迹。第二部分重点在求龙头、龙身和龙尾的位置以及速度。对于第二部分,我们可以采用分类讨论的思想,将轨迹分为四部分,分别为盘入螺线、第一段圆弧、第二段圆弧和盘出螺线。对于龙头前把手位于四部分的情况进行分类讨论,再通过链式求解法确定后一个把手的位置,结合二分法,最终确定精确的位置关系。

\begin{figure}[H]
    \centering
    \includegraphics[width=0.5\textwidth]{img/6.png}  % 替换为你的图片文件名
    \caption{调头演示图}
    \label{fig:examiiox}
\end{figure}

\subsubsection{模型的求解}
对于第一部分,我们可以通过几何关系,利用笛卡尔坐标系,计算出螺线方程,调头空间的方程,将螺线方程与调头空间的方程进行联立,再将A,B,C,D坐标设出,根据几何关系设出方程进行解答。

已知调头空间是以螺线中心为圆心、直径为 9 m 的圆形区域,我们从\textbf{临界状态}进行分析,考虑龙头恰好进入调头空间(即图中A点)时和龙头恰好离开调头空间(即图中B点)时两种临界状态。

等距螺线的极坐标方程为
\begin{eqnarray}
r & = & \frac{b}{2\pi}\theta 
\end{eqnarray}
其中,b为螺距,r为极径,$\theta$为极角

调头空间的参数方程为
\begin{align}
x^2+y^2=R^2\\
x=r\cos \theta \\
y=r\sin \theta
\end{align}
其中,R为调头空间的半径,r为极径,$\theta$为极角。

联立等距螺线方程和圆的方程可以解出A点坐标,由对称性可以解出B点坐标。

由\textbf{几何关系},圆C与盘入螺线相切于A点,圆D与盘出螺线相切与B点,由对称性,直线AB一定过坐标原点,且直线AC与直线BD平行。取A点和圆心C点的中点为I,依题意,圆C半径$r_1$是圆D半径$r_2$的两倍,由几何关系,D点和I点关于坐标原点中心对称。

根据$r_1$和$r_2$的关系建立方程组。
\begin{align}
r_1 & = \sqrt{(x_A-x_C)^2+(y_A-y_C)^2}  \\
r_2 & = \sqrt{(x_B-x_D)^2+(y_B-y_D)^2}  \\
r_1 & = 2*r_2 
\end{align}

从而解出参数t,即可解出圆心C坐标,进而得到圆C和圆D的参数方程。


对于第二部分,我们可以将轨迹分为四部分,盘入螺线,第一段圆弧,第二段圆弧和盘出螺线,分别命名其为轨迹一、轨迹二、轨迹三和轨迹四。
\begin{figure}[H]
    \centering
    \includegraphics[width=0.5\textwidth]{img/4.jpg}  % 替换为你的图片文件名
    \caption{}
    \label{fig:example}
\end{figure}

如何判断把手的位置仅以下列的图作为简单的实例。
假设F点为其中一个把手,已经进入轨迹二中,判断其后一个节点是否在轨迹二中。我们可以设一个点G位于轨迹二上
使得
\begin{eqnarray}
l_{fg} & = & d_{dist}
\end{eqnarray}

其对应的圆心角大小为$\gamma _1$,再计算弧FA对应的圆心角,大小为$\gamma _2$

若$\gamma _1> \gamma _2$则表明后一节点位于轨迹一上。

若$\gamma _1< \gamma _2$,则表明后一节点位于轨道二上。

依次类推,计算出每一个把手位于的轨迹,再结合问题一的思路,运用\textbf{二分法},最终确定把手的具体位置。
速度同样可以借鉴问题一的处理方法,计算出实际速度与板凳的夹角,通过对速度进行分解,沿板凳的速度相同,来求解。


\subsubsection{结果呈现}
将题目所给参数带入模型后,运行结果保存在支撑材料的“result4.xlsx”文件中。−100s、−50s、0s、50s、100s 时,龙头前把手、龙头后面第 1、51、101、151、201节龙身前把手和龙尾后把手的位置和速度如下表。
% 表 1: 位置结果
\begin{table}[H]
    \centering
    \caption{\quad 位置结果}
    \begin{tabular}{|l|c|c|c|c|c|c|}
        \hline
        & -100 s & -50 s & 0 s & 50 s & 100 s  \\ \hline
        龙头 x (m)& 7.742197& 6.594403 & -2.711856& 1.288222& -3.232722 \\ \hline
        龙头 y (m) &3.797509& 1.954535& -3.591078& 6.186761& 7.519400 \\ \hline
        第1节龙身 x (m) & 6.149233& 5.331718 &-0.063534 &3.827529 &  -0.427803\\ \hline
        第1节龙身 y (m)&6.172812 & 4.520705 & -4.670888& 4.870889& 8.077995 \\ \hline
        第51节龙身 x (m) &-10.632459 &-3.577388  &2.459962 & -1.713085& 2.024927 \\ \hline
        第51节龙身 y (m) &2.747033 & -8.986629 &-7.778145 &-6.063134 &4.074820  \\ \hline
        第101节龙身 x (m)&-11.891364 &  10.155895& 3.008493&-7.566012 &  -7.260999\\ \hline
        第101节龙身 y (m)&-4.884474 & -5.923519 & 10.108539& 5.210865&2.148392  \\ \hline
        第151节龙身 x (m) &-14.340378 & 12.9919 &-7.002789 & -4.644707&9.428786  \\ \hline
        第151节龙身 y (m) &-2.068227 & -3.755708 & 10.337482&-10.368225 & -3.622596 \\ \hline
        第201节龙身 x (m) &-12.012074 &10.56417  & -6.872842& 0.293194&  8.58586\\ \hline
        第201节龙身 y (m)&10.501995 &-10.768144  &12.382609 & -13.177758& 8.542785 \\ \hline
        龙尾(后)x (m) &-0.923433 &0.132573  &-1.933627 & 5.898380& -11.024927 \\ \hline
        龙尾(后)y (m) &-16.534138 & 15.722160 &-14.713128 &12.59363 & -6.693262 \\ \hline
    \end{tabular}
\end{table}

% 表 2: 速度结果
\begin{table}[H]
    \centering
    \caption{\quad 速度结果}
    \begin{tabular}{|l|c|c|c|c|c|c|}
        \hline
        & -100 s & -50 s & 0 s & 50 s & 100 s  \\ \hline
        龙头 (m/s) &1 &1 & 1& 1&1  \\ \hline
        第1节龙身 (m/s)  &0.999904 & 0.999762&0.998687 &1.000362 & 1.000124 \\ \hline
        第51节龙身 (m/s) &0.999347 &0.998643 &0.995134 &0.960396 & 1.003955 \\ \hline
        第101节龙身 (m/s)  &0.999092 &0.998249 & 0.994448&0.958926 & 1.100962 \\ \hline
        第151节龙身 (m/s) &0.998945 & 0.998049& 0.994156&0.958477 &1.100000  \\ \hline
        第201节龙身 (m/s) &0.99885 &0.997927 &0.993994 &0.95826 & 1.099626 \\ \hline
        龙尾(后)(m/s) &0.998818 &0.997887 & 0.993944& 0.958196&  1.099525\\ \hline
    \end{tabular}
\end{table}

\subsection{问题五模型的建立与求解}
问题五要求在问题四确定的路径上,通过加快龙头初始行进速度,但要求龙头在行进过程中仍保持速度不变,在其他各把手的速度不大于2m/s的情况下,求出龙头的最快速度。该问题的关键在于考虑舞龙队在不同路径中的运 动,特别是龙头加速后,各节板凳的速度变化情况。

问题五其实是在问题四的基础上对速度进行的一个更深入的研究。在问题四所建立的模型上,进一步进行调整和补充完善。

首先,建立\textbf{几何模型}。问题四中,舞龙队沿螺线盘入,进入调头区域后,通过两段圆弧相切的 S 形曲线实现调头。曲线的前段半径为后段的两倍,并与盘入、盘出螺线相切。可以通过参数化方程描述 S 形曲线
\begin{align}
x_1(t) & = r_1 \cos(\theta(t))\\
y_1(t) & = r_1 \sin(\theta(t))
\end{align}
其中,$r_1$为前段圆弧的半径,t为运动时间。

\begin{align}
x_2(t) & = r_2 \cos(\theta(t))\\
y_2(t) & = r_2 \sin(\theta(t))
\end{align}
其中,$r_2$为后段圆弧的半径,t为运动时间。

然后,建立\textbf{速度传播模型}。舞龙队中各节板凳的位置和速度是依赖龙头的运动来确定的,为了确保舞龙队各节板凳的速度不超过 2 m/s,我们需要控制龙头的速度。假设龙头的最大速度为 $v_{max}$,采用\textbf{数值求解法},用计算机枚举不同的速度,逐步缩小范围,利用\textbf{链式求解法},根据速度关联性求解出每节板凳的最大速度 $v_i$,确保每节板凳的最大速度不超过2m/s。
                                                                                                
将题目所给参数带入模型后,可以求得,\textbf{龙头的最大速度应为1.09m/s}。


\section{模型的分析与检验}
\subsection{模型与思想分析}
1.\textbf{微元法}:通过将时间进行微分,在微小的时间段内,舞龙队的运动轨迹可以近似为圆。这种方法的优点在于其能够有效简化运动轨迹的计算,适合复杂路径的近似。

2.\textbf{链式求解模型}:龙头的轨迹可以通过极坐标方程进行描述,龙身和龙尾则依赖于龙头的运动,通过位置的关系和速度的关联性,利用链式求解法确定各节板凳的位置。这一方法有效地将系统复杂性分解为多个较小的子问题,每节板凳的运动都取决于上一节板凳的状态。

3.\textbf{数值法}:为了找到最小的螺距,该问题通过逐步枚举不同的螺距值,并利用碰撞测试模型来判断是否满足调头空间的条件。这种方法相对简单有效,适用于逐步缩小搜索范围,找到最优解。

\subsection{模型与结果检验}
1.微元法的精度取决于时间步长的大小,较小的时间步长可以提供更精确的结果,但会增加计算量。我们通过实验调整时间步长,大大提高了结果的精度。

2.链式求解的过程会受前一节板凳位置和速度的影响,可能导致误差的累积。为减小误差,我们多次修正前后板凳的相对位置,采用了迭代优化技术。

3.碰撞检测模型通过检测相邻板凳之间的距离,判断它们是否发生碰撞。该模型依赖于几何距离阈值的设定,考虑了板凳的长度和形状。

4.复杂度分析:随着路径复杂性和板凳数量的增加,碰撞检测和回溯法的\textbf{时间复杂度}也会大幅度提升。可能需要对算法进行进一步的优化,例如引入快速碰撞检测算法或采用更智能的搜索策略。

5.模型结合了微元法、链式求解、碰撞检测、回溯法等多种数值计算技术,保证了对复杂动态系统的高效求解。

\section{模型的评价}
\subsection{模型优点}
1. 原创性高,本文中所给出模型均为自主创建;

2. 在问题求解中,对问题进行了合理地简化,避免了复杂因素的讨论。

3. \textbf{链式求解法}将问题分解为多个微小的步骤,逐节计算板凳的位置。通过结合速度关联,能够保证每个板凳的实际运动是连续且符合力学规律的。这种逐步推进的求解方式在描述复杂物体中各部分的相互影响时非常有效。

4.\textbf{碰撞测试模型}可以根据不同的几何形状和布局调整碰撞检测的算法,适应不同的舞龙队形态。通过调整阈值,也可以适应不同的物理环境,甚至是不同的物体类型。

\subsection{模型缺点和改进}
1.模型忽略了物体的形变、运动的连贯性等带来的影响,因此和实际生活存在差异。

2.由于\textbf{链式求解法}要求逐一计算每节板凳的位置,这种方法随着问题规模的扩大,计算的复杂度会显著提升。

3.\textbf{碰撞测试模型}主要针对板凳之间的相对位置和距离进行检测,无法直接反映板凳之间的其他物理性质(如相互作用的力、速度等),因此可能忽略了某些复杂的物理碰撞行为。

4.\textbf{回溯法}虽然能够倒推计算位置,但如果遇到复杂的约束条件或者初始条件设置不当,可能会陷入局部最优解,无法找到全局最优的螺距。

5.在问题四中,对于调头曲线的路径优化问题还有所不足,目前所建的模型很难求出在调头空间中的最优解。

6.在问题五中,介于对每一个把手所求的速度均为整秒时的速度,与2m/s的上限所比较的也是整秒时的速度,还未考量未在整秒时的速度与上限的比较。

可能的改进方法:

1.加入其他客观因素的影响,使其更好地拟合真实情况

2.选择更优化的积分算法,或者提高所取微元的精度,以求更准确的解。


\subsection{模型推广}
链式求解法和速度关联模型可以推广到其他类似的分段系统,如火车节车厢的运动、航行中的蛇形机器人或者具有多个关节的机械臂等场景。任何涉及到多个互相连接的物体并且需要保持速度和力传递连续性的系统,都可以受益于这种链式求解法。



\begin{thebibliography}{99}
    \bibitem{ref1} 刘崇军.等距螺旋的原理与计算[J].数学的实践与认识,2018,48(11):165-174.
    \bibitem{ref2} 马天艺,郭晓日,马君.Matlab图形求解方法在资产评估中的应用——兼论插值法与图像法的比较分析[J].中国资产评估,2023,(05):26-31.
\bibitem{ref3} 陈文苑.文化展演与仪式重构:徽州右龙板凳龙仪式实践的民族志考察——以“互动仪式”理论为视角[J].河池学院学报,2024,44(03):31-39.

\end{thebibliography}

\appendix

\section{附录: 支撑材料说明}
\begin{verbatim}
solution1.py 问题一解答源码

solution2.py 问题二解答源码

solution3.py 问题三解答源码

solution4.py 问题四解答源码

solution5.py 问题五解答源码

caculateangle.py 计算角度源码

result1.xlsx 问题一结果  

result2.xlsx 问题二结果  

result4.xlsx 问题四结果  

answer2.txt 问题二解答

answer3.txt 问题三解答

answer5.txt 问题五解答
\end{verbatim}

\appendix

\section{Appendix A: Detailed Derivations}
\lipsum[4]
solution1.py 问题一解答源码

solution2.py 问题二解答源码

solution3.py 问题三解答源码

solution4.py 问题四解答源码

solution5.py 问题五解答源码

caculateangle.py 计算角度源码

result1.xlsx 问题一结果  

result2.xlsx 问题二结果  

result4.xlsx 问题四结果  

answer2.txt 问题二解答

answer3.txt 问题三解答

answer5.txt 问题五解答
\section{Appendix B: Code Example}

\section{附录: solution1.py}
\begin{verbatim}
import numpy as np
import pandas as pd
import openpyxl

workbook = openpyxl.load_workbook('result1.xlsx')
worksheet1 = workbook['位置']
worksheet2 = workbook['速度']

# 定义常量
v_head = 1.0  # 龙头的速度 (m/s)
b = 0.55  # 螺距 (m)
theta_initial = 16 * 2 * np.pi  # 初始角度,对应第16圈
time_steps = 300  # 总时间 300 秒
dragon_sections = 223  # 总板凳数

# 每个板凳的长度(米),注意龙头的长度不同
lengths = [2.86] + [1.65] * 222


# 初始位置
theta = theta_initial
r = b * theta / (2 * np.pi)

# 记录各节位置
sections = np.zeros((dragon_sections+1, 2))  # 223节的x, y坐标初始化
sections[0] = [r * np.cos(theta), r * np.sin(theta)]  # 龙头初始位置
# 记录各节速度
sections_v = np.zeros(dragon_sections+1)
sections_v[0] = 1.0
# 每秒记录数据
for t in range(time_steps + 1):
    # 更新各节的位置
    cur_theta = theta
    for i in range(1, dragon_sections+1):
        dist = lengths[i - 1]
        prev_x, prev_y = sections[i - 1]
        prev_v = sections_v[i-1]
        prev_theta = cur_theta
        # 计算出当前节点位置
        min_theta = cur_theta
        max_theta = cur_theta + np.pi
        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
        dx = prev_x - cur_x
        dy = prev_y - cur_y
        cur_dist = np.hypot(dx, dy)
        while abs(cur_dist-dist) > np.exp(-20):
            if cur_dist > dist:
                max_theta = (max_theta + min_theta) / 2
            else:
                min_theta = (max_theta + min_theta) / 2
            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
        sections[i] = [cur_x, cur_y]
        cur_theta = (max_theta + min_theta) / 2

        # 计算速度
        k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
        k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
        k_sec = (cur_y - prev_y) / (cur_x - prev_x)
        tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
        tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
        angle_A = np.arctan(tangentA)
        angle_B = np.arctan(tangentB)
        cur_v = prev_v * np.cos(angle_A) / np.cos(angle_B)
        sections_v[i] = cur_v

    # 存入表格
    for i in range(dragon_sections+1):
        worksheet1.cell(row=2*i+2, column=t+2, value=round(sections[i][0], 6))
        worksheet1.cell(row=2 * i + 3, column=t + 2, value=round(sections[i][1], 6))
        worksheet2.cell(row=i+2, column=t + 2, value=round(sections_v[i], 6))

    # 将时间微分至0.0001提高精度
    for i in range(10000):
        dtheta = v_head / 10000 / r
        theta -= dtheta
        r = b * theta / (2 * np.pi)
    sections[0] = [r * np.cos(theta), r * np.sin(theta)]
    print("时间 %d 完成" % t)

workbook.save('result1.xlsx')

\end{verbatim}

\section{附录: solution2.py}
\begin{verbatim}
import numpy as np
import pandas as pd
import openpyxl

workbook = openpyxl.load_workbook('result2.xlsx')
worksheet = workbook['Sheet1']


# 定义常量
v_head = 1.0  # 龙头的速度 (m/s)
b = 0.55  # 螺距 (m)
theta_initial = 16 * 2 * np.pi  # 初始角度,对应第16圈
time_steps = 50000  # 总时间 500 秒,每秒分成100小段以提高精度
dragon_sections = 223  # 总板凳数
# 每个板凳的长度(米),注意龙头的长度不同
lengths = [2.86] + [1.65] * 222


# 初始位置
theta = theta_initial
r = b * theta / (2 * np.pi)

# 记录各节位置
sections = np.zeros((dragon_sections+1, 2))  # 223节的x, y坐标初始化
sections[0] = [r * np.cos(theta), r * np.sin(theta)]  # 龙头初始位置
# 记录各节速度
sections_v = np.zeros(dragon_sections+1)
sections_v[0] = 1.0
# 每秒记录数据
for t in range(time_steps+1):
    # 更新各节的位置和速度
    cur_theta = theta
    for i in range(1, dragon_sections+1):
        # 读取本段距离和上一个把手位置
        dist = lengths[i - 1]
        prev_x, prev_y = sections[i - 1]
        prev_v = sections_v[i-1]
        prev_theta = cur_theta
        # 计算出当前节点位置
        min_theta = cur_theta
        max_theta = cur_theta + np.pi
        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
        dx = prev_x - cur_x
        dy = prev_y - cur_y
        cur_dist = np.hypot(dx, dy)
        while abs(cur_dist-dist) > np.power(10.0, -10):
            if cur_dist > dist:
                max_theta = (max_theta + min_theta) / 2
            else:
                min_theta = (max_theta + min_theta) / 2
            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
        sections[i] = [cur_x, cur_y]
        cur_theta = (max_theta + min_theta) / 2

        # 计算速度
        k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
        k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
        k_sec = (cur_y - prev_y) / (cur_x - prev_x)
        tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
        tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
        angle_A = np.arctan(tangentA)
        angle_B = np.arctan(tangentB)
        cur_v = prev_v * np.cos(angle_A) / np.cos(angle_B)
        sections_v[i] = cur_v

    # 判断是否发生碰撞
    x1, y1 = sections[0]
    x2, y2 = sections[1]
    k1 = (y1 - y2) / (x1 - x2)
    b1 = y1 - k1 * x1
    k2 = -1 / k1
    b2 = y1 - k2 * x1
    b3 = b1 + 0.15 * np.sqrt(1+k1*k1)
    b4 = b1 - 0.15 * np.sqrt(1+k1*k1)
    b5 = b2 + 0.275 * np.sqrt(1+k2*k2)
    b6 = b2 - 0.275 * np.sqrt(1+k2*k2)
    c_x = 0.0
    c_y = 0.0
    if x1 > x2 and y1 > y2:
        c_x = (b5 - b3) / (k1 - k2)
        c_y = k1 * c_x + b3
    elif x1 > x2 and y1 < y2:
        c_x = (b6 - b3) / (k1 - k2)
        c_y = k1 * c_x + b3
    elif x1 < x2 and y1 > y2:
        c_x = (b5 - b4) / (k1 - k2)
        c_y = k1 * c_x + b4
    elif x1 < x2 and y1 < y2:
        c_x = (b6 - b4) / (k1 - k2)
        c_y = k1 * c_x + b4
    elif x1 == x2 and y1 > y2:
        c_x = x1 - 0.15
        c_y = y1 + 0.275
    elif x1 == x2 and y1 < y2:
        c_x = x1 + 0.15
        c_y = y1 - 0.275
    elif x1 > x2 and y1 == y2:
        c_x = x1 + 0.275
        c_y = y1 + 0.15
    elif x1 < x2 and y1 == y2:
        c_x = x1 - 0.275
        c_y = y1 - 0.15
    for i in range(2, dragon_sections + 1, 1):
        xn, yn = sections[i-1]
        xn1, yn1 = sections[i]
        xm = (xn + xn1) / 2
        ym = (yn + yn1) / 2
        kn = (yn1 - yn) / (xn1 - xn)
        bn = yn - kn * xn
        kn1 = -1 / kn
        bn1 = ym - kn1 * xm
        d1 = abs(kn*c_x+bn-c_y) / np.sqrt(1+kn*kn)
        d2 = abs(kn1*c_x+bn1-c_y) / np.sqrt(1+kn1*kn1)
        if d1 <= 0.15 and d2 <= 1.1:
            for j in range(dragon_sections+1):
                worksheet.cell(row=j+2, column=2,value=round(sections[j][0],6))
                worksheet.cell(row=j + 2, column=3, value=round(sections[j][1],6))
                worksheet.cell(row=j + 2, column=4, value=round(sections_v[j],6))
            print("在时刻 %f秒 时发生碰撞" % (t/100))
            workbook.save('result2.xlsx')
            exit()

    # 将时间微分至0.00001s提高精度
    for i in range(1000):
        dtheta = v_head / 100000 / r
        theta -= dtheta
        r = b * theta / (2 * np.pi)
    sections[0] = [r * np.cos(theta), r * np.sin(theta)]

\end{verbatim}

\section{附录: solution3.py}
\begin{verbatim}
import numpy as np

# 定义最小螺距为0.1m,可以很容易得出这个螺距是不行的:
# 由于螺距小于板凳宽,一旦板凳龙绕了一圈后必定相碰,在半径4.5m处就会绕一圈相碰。
b = 0.1

dragon_sections = 223  # 总板凳数
lengths = [2.86] + [1.65] * 222  # 每两个把手的长度(米),注意龙头的长度不同

# 由第二问可得到0.55m螺距下碰撞位置在半径4.5m的圆内,0.55满足要求,现求0.1-0.55范围内恰好满足要求的点,增量设置为0.01m
for db in range(46):
    b += db * 0.01
    # 找到该螺线与半径为4.5m的圆的交点
    inter_theta = 9 * np.pi / b
    sites = np.zeros((dragon_sections + 1, 2))  # 记录每个节点的位置
    head_x = 4.5 * np.cos(inter_theta)
    head_y = 4.5 * np.sin(inter_theta)
    sites[0] = [head_x, head_y]
    cur_theta = inter_theta
    # 计算各把手位置
    for i in range(1, dragon_sections + 1):
        # 读取本段距离和上一个把手位置
        dist = lengths[i - 1]
        prev_x, prev_y = sites[i - 1]
        prev_theta = cur_theta
        # 计算出当前节点位置
        min_theta = cur_theta
        max_theta = cur_theta + np.pi
        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (
                max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
        dx = prev_x - cur_x
        dy = prev_y - cur_y
        cur_dist = np.hypot(dx, dy)
        while abs(cur_dist - dist) > np.power(10.0, -10):
            if cur_dist > dist:
                max_theta = (max_theta + min_theta) / 2
            else:
                min_theta = (max_theta + min_theta) / 2
            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                (max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
        sites[i] = [cur_x, cur_y]
        cur_theta = (max_theta + min_theta) / 2

    # 判断是否发生碰撞
    is_collision = 0
    x1, y1 = sites[0]
    x2, y2 = sites[1]
    k1 = (y1 - y2) / (x1 - x2)
    b1 = y1 - k1 * x1
    k2 = -1 / k1
    b2 = y1 - k2 * x1
    b3 = b1 + 0.15 * np.sqrt(1 + k1 * k1)
    b4 = b1 - 0.15 * np.sqrt(1 + k1 * k1)
    b5 = b2 + 0.275 * np.sqrt(1 + k2 * k2)
    b6 = b2 - 0.275 * np.sqrt(1 + k2 * k2)
    c_x = 0.0
    c_y = 0.0
    if x1 > x2 and y1 > y2:
        c_x = (b5 - b3) / (k1 - k2)
        c_y = k1 * c_x + b3
    elif x1 > x2 and y1 < y2:
        c_x = (b6 - b3) / (k1 - k2)
        c_y = k1 * c_x + b3
    elif x1 < x2 and y1 > y2:
        c_x = (b5 - b4) / (k1 - k2)
        c_y = k1 * c_x + b4
    elif x1 < x2 and y1 < y2:
        c_x = (b6 - b4) / (k1 - k2)
        c_y = k1 * c_x + b4
    for i in range(2, dragon_sections + 1, 1):
        xn, yn = sites[i - 1]
        xn1, yn1 = sites[i]
        xm = (xn + xn1) / 2
        ym = (yn + yn1) / 2
        kn = (yn1 - yn) / (xn1 - xn)
        bn = yn - kn * xn
        kn1 = -1 / kn
        bn1 = ym - kn1 * xm
        d1 = abs(kn * c_x + bn - c_y) / np.sqrt(1 + kn * kn)
        d2 = abs(kn1 * c_x + bn1 - c_y) / np.sqrt(1 + kn1 * kn1)
        if d1 <= 0.15 and d2 <= 1.1:
            is_collision = 1
            break
    if is_collision == 0:
        print("最小螺距为%fm" % b)
        exit()

\end{verbatim}

\section{附录: solution4.py}
\begin{verbatim}
import numpy as np
import openpyxl
from caculate_angle import angle_head
from caculate_angle import angle_body
workbook = openpyxl.load_workbook('result4.xlsx')
worksheet1 = workbook['位置']
worksheet2 = workbook['速度']
b = 1.7
dragon_sections = 223
time_steps = 100
lengths = [2.86] + [1.65] * 222
theta_initial_in = 90 * np.pi / 17
theta_initial_out = 73 * np.pi / 17
azi_o1_in, azi_o1_out, azi_o2_in, azi_o2_out = (0, 0, 0, 0)

# 求当前切入切出位置下的S形圆弧位置
theta_in = theta_initial_in
theta_out = theta_initial_out
# 入切点和出切点的坐标
in_x = b / 2 / np.pi * theta_in * np.cos(theta_in)
in_y = b / 2 / np.pi * theta_in * np.sin(theta_in)
out_x = b / 2 / np.pi * theta_out * np.cos(theta_out) + b / 2 * np.cos(theta_out)
out_y = b / 2 / np.pi * theta_out * np.sin(theta_out) + b / 2 * np.sin(theta_out)
# 出-入切点处切线
k_tangl_in = (np.sin(theta_in) + theta_in * np.cos(theta_in)) / (np.cos(theta_in) - theta_in * np.sin(theta_in))
b_tangl_in = in_y - k_tangl_in * in_x
k_tangl_out = (np.sin(theta_out) + (theta_out + np.pi) * np.cos(theta_out)) / (np.cos(theta_out) - (theta_out + np.pi) * np.sin(theta_out))
b_tangl_out = out_y - k_tangl_out * out_x
# 出-入切点处切线垂线
k_perpl_in = -1 / k_tangl_in
b_perpl_in = in_y - k_perpl_in * in_x
k_perpl_out = -1 / k_tangl_out
b_perpl_out = out_y - k_perpl_out * out_x

# 找到对应盘出轨迹
for d_r1 in range(4010000):
    r1 = d_r1 / 1000000
    r2 = r1 / 2
    # 求两圆心的坐标
    o1_x, o1_y, o2_x, o2_y = (0.0, 0.0, 0.0, 0.0)
    dx_o1 = r1 / np.sqrt(1 + np.power(k_perpl_in, 2))
    dy_o1 = abs(k_perpl_in * r1) / np.sqrt(1 + np.power(k_perpl_in, 2))
    dx_o2 = r2 / np.sqrt(1 + np.power(k_perpl_out, 2))
    dy_o2 = abs(k_perpl_out * r2) / np.sqrt(1 + np.power(k_perpl_out, 2))
    if k_tangl_in > 0 and b_tangl_in > 0:
        o1_x = in_x + dx_o1
        o1_y = in_y - dy_o1
    elif k_tangl_in > 0 and b_tangl_in < 0:
        o1_x = in_x - dx_o1
        o1_y = in_y + dy_o1
    elif k_tangl_in < 0 and b_tangl_in > 0:
        o1_x = in_x - dx_o1
        o1_y = in_y - dy_o1
    elif k_tangl_in < 0 and b_tangl_in < 0:
        o1_x = in_x + dx_o1
        o1_y = in_y + dy_o1
    if k_tangl_out > 0 and b_tangl_out > 0:
        o2_x = out_x + dx_o2
        o2_y = out_y - dy_o2
    elif k_tangl_out > 0 and b_tangl_out < 0:
        o2_x = out_x - dx_o2
        o2_y = out_y + dy_o2
    elif k_tangl_out < 0 and b_tangl_out > 0:
        o2_x = out_x - dx_o2
        o2_y = out_y - dy_o2
    elif k_tangl_out < 0 and b_tangl_out < 0:
        o2_x = out_x + dx_o2
        o2_y = out_y + dy_o2

    # 验证两圆心距离是否满足要求
    d_o1_o2 = np.hypot(o1_x-o2_x, o1_y-o2_y)
    if abs(d_o1_o2 - r1 - r2) <= np.power(10.0, -6):
        # 求两圆切点
        dot_tang_x = (o1_x + 2 * o2_x) / 3
        dot_tang_y = (o1_y + 2 * o2_y) / 3
        print("大圆半径: %lfm\n"
              "小圆半径: %lfm\n"
              "入切点位置: %lf x=%lf y=%lf\n"
              "大圆圆心: %lf %lf\n"
              "两圆切点: %lf %lf\n"
              "小圆圆心: %lf %lf\n"
              "出切点位置: %lf x=%lf y=%lf"
              % (r1,
                 r2,
                 theta_in, in_x, in_y,
                 o1_x, o1_y,
                 dot_tang_x, dot_tang_y,
                 o2_x, o2_y,
                 theta_out, out_x, out_y)
              )
        k_o1_in = (o1_y-in_y) / (o1_x-in_x)
        k_o1_tang = (dot_tang_y-o1_y) / (dot_tang_x-o1_x)
        k_o2_tang = (o2_y-dot_tang_y) / (o2_x-dot_tang_x)
        k_o2_out = (out_y-o2_y) / (out_x-o2_x)
        central_angle_o1 = np.arctan(k_o1_in) + np.pi - np.arctan(k_o1_tang)  # 大圆中的圆心角
        central_angle_o2 = np.arctan(k_o2_out) + np.pi - np.arctan(k_o2_tang)  # 小圆中的圆心角
        azi_o1_in = np.pi + np.arctan(k_o1_in)  # 大圆中进入半径对应方位角
        azi_o1_out = np.arctan(k_o1_tang)  # 大圆中离开半径对应方位角
        azi_o2_in = 2 * np.pi - central_angle_o2 + np.arctan(k_o2_out)  # 小圆中进入半径对应方位角
        azi_o2_out = np.arctan(k_o2_out)  # 小圆中离开半径对应方位角
        break


# 求位置速度相关信息
site_and_v = np.zeros((dragon_sections+1, 3))
site_and_v[0] = (in_x, in_y, 1.0)
head_theta = theta_in
r = b * head_theta / 2 / np.pi
# 针对-100~0的数据计算
for t in range(time_steps + 1):
    # 更新各节的位置
    cur_theta = head_theta
    for i in range(1, dragon_sections+1):
        dist = lengths[i - 1]
        prev_x, prev_y, prev_v= site_and_v[i - 1]
        prev_theta = cur_theta
        # 计算出当前节点位置
        min_theta = cur_theta
        max_theta = cur_theta + np.pi
        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
        dx = prev_x - cur_x
        dy = prev_y - cur_y
        cur_dist = np.hypot(dx, dy)
        while abs(cur_dist-dist) > np.power(10.0, -10):
            if cur_dist > dist:
                max_theta = (max_theta + min_theta) / 2
            else:
                min_theta = (max_theta + min_theta) / 2
            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
        site_and_v[i][0] = cur_x
        site_and_v[i][1] = cur_y
        cur_theta = (max_theta + min_theta) / 2

        # 计算速度
        k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
        k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
        k_sec = (cur_y - prev_y) / (cur_x - prev_x)
        tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
        tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
        angle_A = np.arctan(tangentA)
        angle_B = np.arctan(tangentB)
        cur_v = prev_v * np.cos(angle_A) / np.cos(angle_B)
        site_and_v[i][2] = cur_v

    # 存入表格
    for i in range(dragon_sections+1):
        worksheet1.cell(row=2*i+2, column=102-t, value=np.round(site_and_v[i][0], 6))
        worksheet1.cell(row=2 * i + 3, column=102 - t, value=np.round(site_and_v[i][1], 6))
        worksheet2.cell(row=i+2, column=102 - t, value=np.round(site_and_v[i][2], 6))

    # 将时间微分至0.01提高精度
    for i in range(10000):
        dtheta = 1.0 / 10000 / r
        head_theta += dtheta
        r = b * head_theta / (2 * np.pi)
    site_and_v[0] = [r * np.cos(head_theta), r * np.sin(head_theta), 1.0]

# 针对0~100的数据计算
site_and_v = np.zeros((dragon_sections+1, 3))
site_and_v[0] = (in_x, in_y, 1.0)
head_theta = theta_initial_out  # 龙头到达盘出螺线对应极角
r = b * (head_theta + np.pi) / 2 / np.pi
time_used = 0  # 经过时间
cur_azi_theta = azi_o1_in  # 当前方位角
all_t_o1 = central_angle_o1 * r1  # 在o1中的运动时间
all_t_o2 = central_angle_o2 * r2  # 在o2中的运动时间
d_azi1_o1 = 2 * np.arcsin(1.43 / r1)  # 第一个板凳在o1所需夹角
d_azi2_o1 = 2 * np.arcsin(0.825 / r1)  # 后续板凳在o1所需夹角
d_azi1_o2 = 2 * np.arcsin(1.43 / r2)  # 第一个板凳在o2所需夹角
d_azi2_o2 = 2 * np.arcsin(0.825 / r2)  # 后续板凳在o2所需夹角
theta_out_head = angle_head()  # 第一个板凳在出螺旋线所需龙头前把手极角
theta_out_body = angle_body()  # 后续板凳在出螺旋线所需前一节点极角
print("在o1中时间: %fs\n在o2中时间: %fs" % (all_t_o1, all_t_o2))
for t in range(1, time_steps+1):
    # 龙头进入第一段圆弧
    if t <= all_t_o1:
        print("龙头进入第一段圆弧 %d" % t)
        cur_azi_theta = azi_o1_in - t / r1
        site_and_v[0][0] = o1_x + r1 * np.cos(cur_azi_theta)
        site_and_v[0][1] = o1_y + r1 * np.sin(cur_azi_theta)
        site_and_v[0][2] = 1
        is_intrace = 1
        dist = lengths[0]
        pre_dazi = azi_o1_in - cur_azi_theta
        # 第一节点在第一段圆弧,第二节点在第一段圆弧 v1
        if pre_dazi > d_azi1_o1:
            is_intrace = 1
            cur_azi_theta += d_azi1_o1
            site_and_v[1][0] = o1_x + r1 * np.cos(cur_azi_theta)
            site_and_v[1][1] = o1_y + r1 * np.sin(cur_azi_theta)
            site_and_v[1][2] = 1
        # 第一节点在第一段圆弧,第二节点在盘入螺旋线 v2
        else:
            is_intrace = 0
            prev_azi_theta = cur_azi_theta
            prev_x, prev_y, prev_v = site_and_v[0]
            # 计算出当前节点位置
            min_theta = theta_initial_in
            max_theta = theta_initial_in + np.pi
            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (
                    max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
            while abs(cur_dist - dist) > np.power(10.0, -10):
                if cur_dist > dist:
                    max_theta = (max_theta + min_theta) / 2
                else:
                    min_theta = (max_theta + min_theta) / 2
                cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                    (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                    (max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
            site_and_v[1][0] = cur_x
            site_and_v[1][1] = cur_y
            cur_theta = (max_theta + min_theta) / 2

            # 计算速度
            k_tangl1 = -1 / np.tan(prev_azi_theta)
            k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                        np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
            k_sec = (cur_y - prev_y) / (cur_x - prev_x)
            tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
            tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
            angle_A = np.arctan(tangentA)
            angle_B = np.arctan(tangentB)
            cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
            site_and_v[1][2] = cur_v

        for i in range(2, dragon_sections+1):
            prev_x, prev_y, prev_v = site_and_v[i-1]
            dist = lengths[i-1]
            # 上一节点在第一段圆弧中
            if is_intrace:
                pre_dazi = azi_o1_in - cur_azi_theta
                # 上一节点在第一段圆弧,当前节点在第一段圆弧 v3
                if pre_dazi > d_azi2_o1:
                    is_intrace = 1
                    cur_azi_theta += d_azi2_o1
                    site_and_v[i][0] = o1_x + r1 * np.cos(cur_azi_theta)
                    site_and_v[i][1] = o1_y + r1 * np.sin(cur_azi_theta)
                    site_and_v[i][2] = site_and_v[i-1][2]
                # 上一节点在第一段圆弧,当前节点在盘入螺旋线 v4
                else:
                    is_intrace = 0
                    prev_azi_theta = cur_azi_theta
                    prev_x, prev_y, prev_v = site_and_v[i-1]
                    # 计算出当前节点位置
                    min_theta = theta_initial_in
                    max_theta = theta_initial_in + np.pi
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (
                                           max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    while abs(cur_dist - dist) > np.power(10.0, -10):
                        if cur_dist > dist:
                            max_theta = (max_theta + min_theta) / 2
                        else:
                            min_theta = (max_theta + min_theta) / 2
                        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                            (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                            (max_theta + min_theta) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y
                    cur_theta = (max_theta + min_theta) / 2

                    # 计算速度
                    k_tangl1 = -1 / np.tan(prev_azi_theta)
                    k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                            np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v

            # 上一节点在盘入螺旋线,下一节点在盘入螺旋线 v5
            else:
                prev_theta = cur_theta
                prev_x, prev_y, prev_v = site_and_v[i - 1]
                # 计算出当前节点位置
                min_theta = cur_theta
                max_theta = min_theta + np.pi
                cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                    (max_theta + min_theta) / 2), b * (
                                       max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                    (max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                while abs(cur_dist - dist) > np.power(10.0, -10):
                    if cur_dist > dist:
                        max_theta = (max_theta + min_theta) / 2
                    else:
                        min_theta = (max_theta + min_theta) / 2
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                site_and_v[i][0] = cur_x
                site_and_v[i][1] = cur_y
                cur_theta = (max_theta + min_theta) / 2

                # 计算速度
                k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (
                            np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
                k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                            np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[i][2] = cur_v
        # 将数据填入表格
        for i in range(dragon_sections+1):
            worksheet1.cell(row=2*i+2, column=102 + t, value=np.round(site_and_v[i][0], 6))
            worksheet1.cell(row=2*i+3, column=102 + t, value=np.round(site_and_v[i][1], 6))
            worksheet2.cell(row=i+2, column=102 + t, value=np.round(site_and_v[i][2], 6))

    # 龙头进入第二段圆弧
    elif t <= all_t_o1 + all_t_o2:
        print("龙头进入第二段圆弧 %d" % t)
        cur_azi_theta = azi_o2_in + (t-all_t_o1) / r2
        site_and_v[0][0] = o2_x + r2 * np.cos(cur_azi_theta)
        site_and_v[0][1] = o2_y + r2 * np.sin(cur_azi_theta)
        site_and_v[0][2] = 1
        is_intrace2 = 1
        is_intrace1 = 0
        dist = lengths[0]
        pre_dazi2 = cur_azi_theta - azi_o2_in
        # 第一节点在第二段圆弧,第二节点在第二段圆弧 v6
        if pre_dazi2 > d_azi1_o2:
            is_intrace2 = 1
            is_intrace1 = 0
            cur_azi_theta -= d_azi1_o2
            site_and_v[1][0] = o2_x + r2 * np.cos(cur_azi_theta)
            site_and_v[1][1] = o2_y + r2 * np.sin(cur_azi_theta)
            site_and_v[1][2] = 1
        # 第一节点在第二段圆弧,第二节点在第一段圆弧 v7
        else:
            is_intrace2 = 0
            is_intrace1 = 1
            prev_azi_theta = cur_azi_theta
            prev_x, prev_y, prev_v = site_and_v[0]
            # 计算出当前节点位置
            min_azi = azi_o1_out
            max_azi = azi_o1_in
            cur_x, cur_y = o1_x + r1 * np.cos((min_azi+max_azi)/2), o1_y + r1 * np.sin((min_azi+max_azi)/2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
            while abs(cur_dist - dist) > np.power(10.0, -10):
                if cur_dist > dist:
                    max_azi = (max_azi + min_azi) / 2
                else:
                    min_azi = (max_azi + min_azi) / 2
                cur_x, cur_y = o1_x + r1 * np.cos((min_azi+max_azi)/2), o1_y + r1 * np.sin((min_azi+max_azi)/2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
            site_and_v[1][0] = cur_x
            site_and_v[1][1] = cur_y
            cur_azi_theta = (max_azi + min_azi) / 2

            # 计算速度
            k_tangl1 = -1 / np.tan(cur_azi_theta)
            k_tangl2 = -1 / np.tan(prev_azi_theta)
            k_sec = (cur_y - prev_y) / (cur_x - prev_x)
            tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
            tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
            angle_A = np.arctan(tangentA)
            angle_B = np.arctan(tangentB)
            cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
            site_and_v[1][2] = cur_v

        for i in range(2, dragon_sections+1):
            dist = lengths[i-1]
            prev_x, prev_y, prev_v = site_and_v[i-1]
            # 上一节点在第二段圆弧
            if is_intrace2:
                pre_dazi2 = cur_azi_theta - azi_o2_in
                # 上一节点在第二段圆弧,当前节点在第二段圆弧 v8
                if pre_dazi2 > d_azi2_o2:
                    is_intrace2 = 1
                    is_intrace1 = 0
                    cur_azi_theta -= d_azi2_o2
                    site_and_v[i][0] = o2_x + r2 * np.cos(cur_azi_theta)
                    site_and_v[i][1] = o2_y + r2 * np.sin(cur_azi_theta)
                    site_and_v[i][2] = site_and_v[i-1][2]
                # 上一节点在第二段圆弧,当前节点在第一段圆弧 v9
                else:
                    is_intrace2 = 0
                    is_intrace1 = 1
                    prev_azi_theta = cur_azi_theta
                    prev_x, prev_y, prev_v = site_and_v[i-1]
                    # 计算出当前节点位置
                    min_azi = azi_o1_out
                    max_azi = azi_o1_in
                    cur_x, cur_y = o1_x + r1 * np.cos((min_azi + max_azi) / 2), o1_y + r1 * np.sin(
                        (min_azi + max_azi) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    while abs(cur_dist - dist) > np.power(10.0, -10):
                        if cur_dist > dist:
                            max_azi = (max_azi + min_azi) / 2
                        else:
                            min_azi = (max_azi + min_azi) / 2
                        cur_x, cur_y = o1_x + r1 * np.cos((min_azi + max_azi) / 2), o1_y + r1 * np.sin(
                            (min_azi + max_azi) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y
                    cur_azi_theta = (max_azi + min_azi) / 2

                    # 计算速度
                    k_tangl1 = -1 / np.tan(prev_azi_theta)
                    k_tangl2 = -1 / np.tan(cur_azi_theta)
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v

            # 上一节点在第一段圆弧
            elif is_intrace1:
                prev_azi_theta = cur_azi_theta
                pre_dazi1 = azi_o1_in - cur_azi_theta
                # 上一节点在第一段圆弧,当前节点在第一段圆弧 v10
                if pre_dazi1 > d_azi2_o1:
                    is_intrace1 = 1
                    is_intrace2 = 0
                    cur_azi_theta += d_azi2_o1
                    site_and_v[i][0] = o1_x + r1 * np.cos(cur_azi_theta)
                    site_and_v[i][1] = o1_y + r1 * np.sin(cur_azi_theta)
                    site_and_v[i][2] = site_and_v[i-1][2]
                # 上一节点在第一段圆弧,当前节点在盘入螺旋线 v11
                else:
                    is_intrace1 = 0
                    is_intrace2 = 0
                    prev_azi_theta = cur_azi_theta
                    prev_x, prev_y, prev_v = site_and_v[i - 1]
                    # 计算出当前节点位置
                    min_theta = theta_initial_in
                    max_theta = theta_initial_in + np.pi
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (
                                           max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    while abs(cur_dist - dist) > np.power(10.0, -10):
                        if cur_dist > dist:
                            max_theta = (max_theta + min_theta) / 2
                        else:
                            min_theta = (max_theta + min_theta) / 2
                        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                            (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                            (max_theta + min_theta) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y
                    cur_theta = (max_theta + min_theta) / 2

                    # 计算速度
                    k_tangl1 = -1 / np.tan(prev_azi_theta)
                    k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                            np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v

            # 上一节点在盘入螺旋线,当前节点在盘入螺旋线 v12
            else:
                is_intrace1 = 0
                is_intrace2 = 0
                prev_theta = cur_theta
                prev_x, prev_y, prev_v = site_and_v[i - 1]
                # 计算出当前节点位置
                min_theta = cur_theta
                max_theta = min_theta + np.pi
                cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                    (max_theta + min_theta) / 2), b * (
                                       max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                    (max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                while abs(cur_dist - dist) > np.power(10.0, -10):
                    if cur_dist > dist:
                        max_theta = (max_theta + min_theta) / 2
                    else:
                        min_theta = (max_theta + min_theta) / 2
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                site_and_v[i][0] = cur_x
                site_and_v[i][1] = cur_y
                cur_theta = (max_theta + min_theta) / 2

                # 计算速度
                k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (
                        np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
                k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                        np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[i][2] = cur_v

            for i in range(dragon_sections+1):
                worksheet1.cell(row=2*i+2, column=102 + t, value=np.round(site_and_v[i][0], 6))
                worksheet1.cell(row=2*i+3, column=102 + t, value=np.round(site_and_v[i][1], 6))
                worksheet2.cell(row=i+2, column=102 + t, value=np.round(site_and_v[i][2], 6))

    # 龙头进入盘出螺旋线
    else:
        print("龙头进入盘出螺旋线 %d" % t)
        for i in range(100000):
            dtheta = 1 / 100000 * (t - all_t_o1 - all_t_o2) / r
            head_theta += dtheta
            r = b * (head_theta + np.pi) / 2 / np.pi
        time_used = t
        break
for t in range(time_used, time_steps+1):
    print("龙头进入盘出螺旋线 %d" % t)
    site_and_v[0][0] = r * np.cos(head_theta)
    site_and_v[0][1] = r * np.sin(head_theta)
    site_and_v[0][2] = 1
    dist = lengths[0]
    is_intrace3 = 1
    is_intrace2 = 0
    is_intrace1 = 0
    prev_x, prev_y, prev_v = site_and_v[0]
    theta_out = head_theta
    # 第一节点在盘出螺旋线,第二节点在盘出螺旋线 v13
    if theta_out > theta_out_head:
        print("第一节点在盘出螺旋线,第二节点在盘出螺旋线 %d" % t)
        prev_theta = head_theta
        is_intrace3 = 1
        is_intrace2 = 0
        is_intrace1 = 0
        max_theta = head_theta
        min_theta = max_theta - np.pi
        cur_x, cur_y = b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.cos((max_theta + min_theta) / 2), b * (
                    (max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.sin((max_theta + min_theta) / 2)
        dx = prev_x - cur_x
        dy = prev_y - cur_y
        cur_dist = np.hypot(dx, dy)
        while abs(cur_dist - dist) > np.power(10.0, -10):
            if cur_dist > dist:
                min_theta = (max_theta + min_theta) / 2
            else:
                max_theta = (max_theta + min_theta) / 2
            cur_x, cur_y = b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.cos((max_theta + min_theta) / 2), b * (
                    (max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.sin((max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
        site_and_v[1][0] = cur_x
        site_and_v[1][1] = cur_y
        cur_theta = (min_theta + max_theta) / 2

        # 计算速度
        k_tangl1 = (np.sin(prev_theta) + (prev_theta + np.pi) * np.cos(prev_theta)) / (
                    np.cos(prev_theta) - (prev_theta+np.pi) * np.sin(prev_theta))
        k_tangl2 = (np.sin(cur_theta) + (cur_theta+np.pi) * np.cos(cur_theta)) / (
                    np.cos(cur_theta) - (cur_theta+np.pi) * np.sin(cur_theta))
        k_sec = (cur_y - prev_y) / (cur_x - prev_x)
        tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
        tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
        angle_A = np.arctan(tangentA)
        angle_B = np.arctan(tangentB)
        cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
        site_and_v[1][2] = cur_v
    # 第一节点在盘出螺旋线,第二节点在第二段圆弧 v14
    else:
        print("第一节点在盘出螺旋线,第二节点在第二段圆弧 %d" % t)
        prev_theta = head_theta
        prev_x,prev_y,prev_v = site_and_v[0]
        is_intrace3 = 0
        is_intrace2 = 1
        is_intrace1 = 0
        min_azi = azi_o2_in
        max_azi = 2 * np.pi + azi_o2_out
        cur_azi_theta = (min_azi + max_azi) / 2
        cur_x, cur_y = o2_x + r2 * np.cos(cur_azi_theta), o2_y + r2 * np.sin(
            cur_azi_theta)
        dx = prev_x - cur_x
        dy = prev_y - cur_y
        cur_dist = np.hypot(dx, dy)
        while abs(cur_dist - dist) > np.power(10.0, -10):
            if cur_dist > dist:
                min_azi = (max_azi + min_azi) / 2
            else:
                max_azi = (max_azi + min_azi) / 2
            cur_azi_theta = (min_azi + max_azi) / 2
            cur_x, cur_y = o2_x + r2 * np.cos(cur_azi_theta), o2_y + r2 * np.sin(
                cur_azi_theta)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
        site_and_v[1][0] = cur_x
        site_and_v[1][1] = cur_y

        # 计算速度
        k_tangl1 = (np.sin(prev_theta) + (prev_theta + np.pi) * np.cos(prev_theta)) / (
                np.cos(prev_theta) - (prev_theta + np.pi) * np.sin(prev_theta))
        k_tangl2 = -1 / np.tan(cur_azi_theta)
        k_sec = (cur_y - prev_y) / (cur_x - prev_x)
        tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
        tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
        angle_A = np.arctan(tangentA)
        angle_B = np.arctan(tangentB)
        cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
        site_and_v[1][2] = cur_v

    for i in range(2, dragon_sections + 1):
        dist = lengths[i - 1]
        prev_x, prev_y, prev_v = site_and_v[i-1]
        # 上一节点在盘出螺旋线
        if is_intrace3:
            theta_out = cur_theta
            prev_theta = cur_theta
            # 上一节点在盘出螺旋线,当前节点在盘出螺旋线 v15
            if theta_out > theta_out_body:
                print("上一节点 %d 在盘出螺旋线,当前节点 %d 在盘出螺旋线 %d" % (i-1, i, t))
                is_intrace3 = 1
                is_intrace2 = 0
                is_intrace1 = 0
                max_theta = cur_theta
                min_theta = max_theta - np.pi
                cur_x, cur_y = b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.cos(
                    (max_theta + min_theta) / 2), b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.sin(
                    (max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                while abs(cur_dist - dist) > np.power(10.0, -10):
                    if cur_dist > dist:
                        min_theta = (max_theta + min_theta) / 2
                    else:
                        max_theta = (max_theta + min_theta) / 2
                    cur_x, cur_y = b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.cos(
                        (max_theta + min_theta) / 2), b * (
                                           (max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                site_and_v[i][0] = cur_x
                site_and_v[i][1] = cur_y
                cur_theta = (max_theta + min_theta) / 2

                # 计算速度
                k_tangl1 = (np.sin(prev_theta) + (prev_theta + np.pi) * np.cos(prev_theta)) / (
                        np.cos(prev_theta) - (prev_theta + np.pi) * np.sin(prev_theta))
                k_tangl2 = (np.sin(cur_theta) + (cur_theta + np.pi) * np.cos(cur_theta)) / (
                        np.cos(cur_theta) - (cur_theta + np.pi) * np.sin(cur_theta))
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[i][2] = cur_v
            # 上一节点在盘出螺旋线,当前节点在第二段圆弧 v16
            else:
                print("上一节点 %d 在盘出螺旋线,当前节点 %d 在第二段圆弧 %d" % (i-1, i, t))
                is_intrace3 = 0
                is_intrace2 = 1
                is_intrace1 = 0
                prev_theta = cur_theta
                min_azi = azi_o2_in
                max_azi = 2 * np.pi + azi_o2_out
                cur_azi_theta = (min_azi + max_azi) / 2
                cur_x, cur_y = o2_x + r2 * np.cos(cur_azi_theta), o2_y + r2 * np.sin(
                    cur_azi_theta)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                while abs(cur_dist - dist) > np.power(10.0, -10):
                    if cur_dist > dist:
                        min_azi = (max_azi + min_azi) / 2
                    else:
                        max_azi = (max_azi + min_azi) / 2
                    cur_azi_theta = (min_azi + max_azi) / 2
                    cur_x, cur_y = o2_x + r2 * np.cos(cur_azi_theta), o2_y + r2 * np.sin(
                        cur_azi_theta)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                site_and_v[i][0] = cur_x
                site_and_v[i][1] = cur_y

                # 计算速度
                k_tangl1 = (np.sin(prev_theta) + (prev_theta + np.pi) * np.cos(prev_theta)) / (
                        np.cos(prev_theta) - (prev_theta + np.pi) * np.sin(prev_theta))
                k_tangl2 = -1 / np.tan(cur_azi_theta)
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[i][2] = cur_v

        # 上一节点在第二段圆弧
        elif is_intrace2:
            pre_dazi2 = cur_azi_theta - azi_o2_in
            # 上一节点在第二段圆弧,当前节点在第二段圆弧 v17
            if pre_dazi2 > d_azi2_o2:
                print("上一节点 %d 在第二段圆弧,当前节点 %d 在第二段圆弧 %d" % (i-1, i, t))
                is_intrace3 = 0
                is_intrace2 = 1
                is_intrace1 = 0
                cur_azi_theta -= d_azi2_o2
                site_and_v[i][0] = o2_x + r2 * np.cos(cur_azi_theta)
                site_and_v[i][1] = o2_y + r2 * np.sin(cur_azi_theta)
                site_and_v[i][2] = site_and_v[i-1][2]
            # 上一节点在第二段圆弧,当前节点在第一段圆弧 v18
            else:
                print("上一节点 %d 在第二段圆弧,当前节点 %d 在第一段圆弧 %d" % (i-1, i, t))
                is_intrace3 = 0
                is_intrace2 = 0
                is_intrace1 = 1
                prev_azi_theta = cur_azi_theta
                prev_x, prev_y, prev_v = site_and_v[i - 1]
                # 计算出当前节点位置
                min_azi = azi_o1_out
                max_azi = azi_o1_in
                cur_x, cur_y = o1_x + r1 * np.cos((min_azi + max_azi) / 2), o1_y + r1 * np.sin(
                    (min_azi + max_azi) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                times = 0
                while abs(cur_dist - dist) > np.power(10.0, -5):
                    if cur_dist > dist:
                        max_azi = (max_azi + min_azi) / 2
                    else:
                        min_azi = (max_azi + min_azi) / 2
                    cur_x, cur_y = o1_x + r1 * np.cos((min_azi + max_azi) / 2), o1_y + r1 * np.sin(
                        (min_azi + max_azi) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    times += 1
                    if times <= 100 and t == 17:
                        print(cur_dist, min_azi, max_azi, sep=' ')
                site_and_v[i][0] = cur_x
                site_and_v[i][1] = cur_y
                cur_azi_theta = (max_azi + min_azi) / 2

                # 计算速度
                k_tangl1 = -1 / np.tan(prev_azi_theta)
                k_tangl2 = -1 / np.tan(cur_azi_theta)
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[i][2] = cur_v

        # 上一节点在第一段圆弧
        elif is_intrace1:
            pre_dazi1 = azi_o1_in - cur_azi_theta
            # 上一节点在第一段圆弧,当前节点在第一段圆弧 v19
            if pre_dazi1 > d_azi2_o1:
                print("上一节点 %d 在第一段圆弧,当前节点 %d 在第一段圆弧 %d" % (i-1, i, t))
                is_intrace3 = 0
                is_intrace1 = 1
                is_intrace2 = 0
                cur_azi_theta += d_azi2_o1
                site_and_v[i][0] = o1_x + r1 * np.cos(cur_azi_theta)
                site_and_v[i][1] = o1_y + r1 * np.sin(cur_azi_theta)
                site_and_v[i][2] = site_and_v[i-1][2]
            # 上一节点在第一段圆弧,当前节点在盘入螺旋线 v20
            else:
                print("上一节点 %d 在第一段圆弧,当前节点 %d 在盘入螺旋线 %d" % (i-1, i, t))
                is_intrace1 = 0
                is_intrace2 = 0
                is_intrace3 = 0
                prev_azi_theta = cur_azi_theta
                prev_x, prev_y, prev_v = site_and_v[i - 1]
                # 计算出当前节点位置
                min_theta = theta_initial_in
                max_theta = theta_initial_in + np.pi
                cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                    (max_theta + min_theta) / 2), b * (
                                       max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                    (max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                while abs(cur_dist - dist) > np.power(10.0, -10):
                    if cur_dist > dist:
                        max_theta = (max_theta + min_theta) / 2
                    else:
                        min_theta = (max_theta + min_theta) / 2
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                site_and_v[i][0] = cur_x
                site_and_v[i][1] = cur_y
                cur_theta = (max_theta + min_theta) / 2

                # 计算速度
                k_tangl1 = -1 / np.tan(prev_azi_theta)
                k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[i][2] = cur_v
        # 上一节点在盘入螺旋线,当前节点在盘入螺旋线 v21
        else:
            print("上一节点 %d 在盘入螺旋线,当前节点 %d 在盘入螺旋线 %d" % (i-1, i, t))
            is_intrace1 = 0
            is_intrace2 = 0
            is_intrace3 = 0
            prev_theta = cur_theta
            prev_x, prev_y, prev_v = site_and_v[i - 1]
            # 计算出当前节点位置
            min_theta = cur_theta
            max_theta = min_theta + np.pi
            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                (max_theta + min_theta) / 2), b * (
                                   max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                (max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
            while abs(cur_dist - dist) > np.power(10.0, -10):
                if cur_dist > dist:
                    max_theta = (max_theta + min_theta) / 2
                else:
                    min_theta = (max_theta + min_theta) / 2
                cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                    (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                    (max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
            site_and_v[i][0] = cur_x
            site_and_v[i][1] = cur_y
            cur_theta = (max_theta + min_theta) / 2

            # 计算速度
            k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (
                        np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
            k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                        np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
            k_sec = (cur_y - prev_y) / (cur_x - prev_x)
            tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
            tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
            angle_A = np.arctan(tangentA)
            angle_B = np.arctan(tangentB)
            cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
            site_and_v[i][2] = cur_v

    for i in range(dragon_sections + 1):
        worksheet1.cell(row=2 * i + 2, column=102 + t, value=np.round(site_and_v[i][0], 6))
        worksheet1.cell(row=2 * i + 3, column=102 + t, value=np.round(site_and_v[i][1], 6))
        worksheet2.cell(row=i + 2, column=102 + t, value=np.round(site_and_v[i][2], 6))

    for i in range(10000):
        dtheta = 1 / 10000 / r
        head_theta += dtheta
        r = b * (head_theta + np.pi) / 2 / np.pi

workbook.save('result4.xlsx')
\end{verbatim}

\section{附录: solution5.py}
\begin{verbatim}
import numpy as np
from caculate_angle import angle_head
from caculate_angle import angle_body

b = 1.7
v_head = 1.0
dragon_sections = 223
time_steps = 100
lengths = [2.86] + [1.65] * 222
theta_initial_in = 90 * np.pi / 17
theta_initial_out = 73 * np.pi / 17
azi_o1_in, azi_o1_out, azi_o2_in, azi_o2_out = (0, 0, 0, 0)

# 求当前切入切出位置下的S形圆弧位置
theta_in = theta_initial_in
theta_out = theta_initial_out
# 入切点和出切点的坐标
in_x = b / 2 / np.pi * theta_in * np.cos(theta_in)
in_y = b / 2 / np.pi * theta_in * np.sin(theta_in)
out_x = b / 2 / np.pi * theta_out * np.cos(theta_out) + b / 2 * np.cos(theta_out)
out_y = b / 2 / np.pi * theta_out * np.sin(theta_out) + b / 2 * np.sin(theta_out)
# 出-入切点处切线
k_tangl_in = (np.sin(theta_in) + theta_in * np.cos(theta_in)) / (np.cos(theta_in) - theta_in * np.sin(theta_in))
b_tangl_in = in_y - k_tangl_in * in_x
k_tangl_out = (np.sin(theta_out) + (theta_out + np.pi) * np.cos(theta_out)) / (np.cos(theta_out) - (theta_out + np.pi) * np.sin(theta_out))
b_tangl_out = out_y - k_tangl_out * out_x
# 出-入切点处切线垂线
k_perpl_in = -1 / k_tangl_in
b_perpl_in = in_y - k_perpl_in * in_x
k_perpl_out = -1 / k_tangl_out
b_perpl_out = out_y - k_perpl_out * out_x

# 找到对应盘出轨迹
for d_r1 in range(4010000):
    r1 = d_r1 / 1000000
    r2 = r1 / 2
    # 求两圆心的坐标
    o1_x, o1_y, o2_x, o2_y = (0.0, 0.0, 0.0, 0.0)
    dx_o1 = r1 / np.sqrt(1 + np.power(k_perpl_in, 2))
    dy_o1 = abs(k_perpl_in * r1) / np.sqrt(1 + np.power(k_perpl_in, 2))
    dx_o2 = r2 / np.sqrt(1 + np.power(k_perpl_out, 2))
    dy_o2 = abs(k_perpl_out * r2) / np.sqrt(1 + np.power(k_perpl_out, 2))
    if k_tangl_in > 0 and b_tangl_in > 0:
        o1_x = in_x + dx_o1
        o1_y = in_y - dy_o1
    elif k_tangl_in > 0 and b_tangl_in < 0:
        o1_x = in_x - dx_o1
        o1_y = in_y + dy_o1
    elif k_tangl_in < 0 and b_tangl_in > 0:
        o1_x = in_x - dx_o1
        o1_y = in_y - dy_o1
    elif k_tangl_in < 0 and b_tangl_in < 0:
        o1_x = in_x + dx_o1
        o1_y = in_y + dy_o1
    if k_tangl_out > 0 and b_tangl_out > 0:
        o2_x = out_x + dx_o2
        o2_y = out_y - dy_o2
    elif k_tangl_out > 0 and b_tangl_out < 0:
        o2_x = out_x - dx_o2
        o2_y = out_y + dy_o2
    elif k_tangl_out < 0 and b_tangl_out > 0:
        o2_x = out_x - dx_o2
        o2_y = out_y - dy_o2
    elif k_tangl_out < 0 and b_tangl_out < 0:
        o2_x = out_x + dx_o2
        o2_y = out_y + dy_o2

    # 验证两圆心距离是否满足要求
    d_o1_o2 = np.hypot(o1_x-o2_x, o1_y-o2_y)
    if abs(d_o1_o2 - r1 - r2) <= np.power(10.0, -6):
        # 求两圆切点
        dot_tang_x = (o1_x + 2 * o2_x) / 3
        dot_tang_y = (o1_y + 2 * o2_y) / 3
        print("大圆半径: %lfm\n"
              "小圆半径: %lfm\n"
              "入切点位置: %lf x=%lf y=%lf\n"
              "大圆圆心: %lf %lf\n"
              "两圆切点: %lf %lf\n"
              "小圆圆心: %lf %lf\n"
              "出切点位置: %lf x=%lf y=%lf"
              % (r1,
                 r2,
                 theta_in, in_x, in_y,
                 o1_x, o1_y,
                 dot_tang_x, dot_tang_y,
                 o2_x, o2_y,
                 theta_out, out_x, out_y)
              )
        k_o1_in = (o1_y-in_y) / (o1_x-in_x)
        k_o1_tang = (dot_tang_y-o1_y) / (dot_tang_x-o1_x)
        k_o2_tang = (o2_y-dot_tang_y) / (o2_x-dot_tang_x)
        k_o2_out = (out_y-o2_y) / (out_x-o2_x)
        central_angle_o1 = np.arctan(k_o1_in) + np.pi - np.arctan(k_o1_tang)  # 大圆中的圆心角
        central_angle_o2 = np.arctan(k_o2_out) + np.pi - np.arctan(k_o2_tang)  # 小圆中的圆心角
        azi_o1_in = np.pi + np.arctan(k_o1_in)  # 大圆中进入半径对应方位角
        azi_o1_out = np.arctan(k_o1_tang)  # 大圆中离开半径对应方位角
        azi_o2_in = 2 * np.pi - central_angle_o2 + np.arctan(k_o2_out)  # 小圆中进入半径对应方位角
        azi_o2_out = np.arctan(k_o2_out)  # 小圆中离开半径对应方位角
        break

for dv in range(1, 101):
    v_head += dv / 100
    print(v_head)
    # 求位置速度相关信息
    site_and_v = np.zeros((dragon_sections+1, 3))
    site_and_v[0] = (in_x, in_y, v_head)
    head_theta = theta_initial_in
    r = b * head_theta / 2 / np.pi
    # 针对-100~0的数据计算
    for t in range(time_steps + 1):
        # 更新各节的位置
        cur_theta = head_theta
        for i in range(1, dragon_sections+1):
            dist = lengths[i - 1]
            prev_x, prev_y, prev_v = site_and_v[i - 1]
            prev_theta = cur_theta
            # 计算出当前节点位置
            min_theta = cur_theta
            max_theta = cur_theta + np.pi
            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
            while abs(cur_dist-dist) > np.power(10.0, -10):
                if cur_dist > dist:
                    max_theta = (max_theta + min_theta) / 2
                else:
                    min_theta = (max_theta + min_theta) / 2
                cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
            site_and_v[i][0] = cur_x
            site_and_v[i][1] = cur_y
            cur_theta = (max_theta + min_theta) / 2

            # 计算速度
            k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
            k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
            k_sec = (cur_y - prev_y) / (cur_x - prev_x)
            tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
            tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
            angle_A = np.arctan(tangentA)
            angle_B = np.arctan(tangentB)
            cur_v = prev_v * np.cos(angle_A) / np.cos(angle_B)
            site_and_v[i][2] = cur_v
            if cur_v > 2.0:
                print("时间:%d" % t)
                print("最大速度为%fm/s" % (v_head-0.01))
                exit()
        # 将时间微分至0.01提高精度
        for i in range(10000):
            dtheta = v_head / 10000 / r
            head_theta += dtheta
            r = b * head_theta / (2 * np.pi)
        site_and_v[0] = [r * np.cos(head_theta), r * np.sin(head_theta), v_head]

    # 针对0~100的数据计算
    site_and_v = np.zeros((dragon_sections+1, 3))
    site_and_v[0] = (in_x, in_y, v_head)
    head_theta = theta_initial_out  # 龙头到达盘出螺线对应极角
    r = b * (head_theta + np.pi) / 2 / np.pi
    time_used = 0  # 经过时间
    cur_azi_theta = azi_o1_in  # 当前方位角
    all_t_o1 = central_angle_o1 * r1 / v_head  # 在o1中的运动时间
    all_t_o2 = central_angle_o2 * r2 / v_head  # 在o2中的运动时间
    d_azi1_o1 = 2 * np.arcsin(1.43 / r1)  # 第一个板凳在o1所需夹角
    d_azi2_o1 = 2 * np.arcsin(0.825 / r1)  # 后续板凳在o1所需夹角
    d_azi1_o2 = 2 * np.arcsin(1.43 / r2)  # 第一个板凳在o2所需夹角
    d_azi2_o2 = 2 * np.arcsin(0.825 / r2)  # 后续板凳在o2所需夹角
    theta_out_head = angle_head()  # 第一个板凳在出螺旋线所需龙头前把手极角
    theta_out_body = angle_body()  # 后续板凳在出螺旋线所需前一节点极角
    print("在o1中时间: %fs\n在o2中时间: %fs" % (all_t_o1, all_t_o2))
    for t in range(1, time_steps+1):
        # 龙头进入第一段圆弧
        if t <= all_t_o1:
            print("龙头进入第一段圆弧 %d" % t)
            cur_azi_theta = azi_o1_in - v_head * t / r1
            site_and_v[0][0] = o1_x + r1 * np.cos(cur_azi_theta)
            site_and_v[0][1] = o1_y + r1 * np.sin(cur_azi_theta)
            site_and_v[0][2] = v_head
            is_intrace = 1
            dist = lengths[0]
            pre_dazi = azi_o1_in - cur_azi_theta
            # 第一节点在第一段圆弧,第二节点在第一段圆弧 v1
            if pre_dazi > d_azi1_o1:
                is_intrace = 1
                cur_azi_theta += d_azi1_o1
                site_and_v[1][0] = o1_x + r1 * np.cos(cur_azi_theta)
                site_and_v[1][1] = o1_y + r1 * np.sin(cur_azi_theta)
                site_and_v[1][2] = v_head
                if v_head > 2.0:
                    print("时间:%d" % t)
                    print("最大速度为%fm/s" % (v_head-0.01))
                    exit()
            # 第一节点在第一段圆弧,第二节点在盘入螺旋线 v2
            else:
                is_intrace = 0
                prev_azi_theta = cur_azi_theta
                prev_x, prev_y, prev_v = site_and_v[0]
                # 计算出当前节点位置
                min_theta = theta_initial_in
                max_theta = theta_initial_in + np.pi
                cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos((max_theta + min_theta) / 2), b * (
                        max_theta + min_theta) / 2 / (2 * np.pi) * np.sin((max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                while abs(cur_dist - dist) > np.power(10.0, -10):
                    if cur_dist > dist:
                        max_theta = (max_theta + min_theta) / 2
                    else:
                        min_theta = (max_theta + min_theta) / 2
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                site_and_v[1][0] = cur_x
                site_and_v[1][1] = cur_y
                cur_theta = (max_theta + min_theta) / 2

                # 计算速度
                k_tangl1 = -1 / np.tan(prev_azi_theta)
                k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                            np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[1][2] = cur_v

                if cur_v > 2.0:
                    print("时间:%d" % t)
                    print("最大速度为%fm/s" % (v_head - 0.01))
                    exit()

            for i in range(2, dragon_sections+1):
                prev_x, prev_y, prev_v = site_and_v[i-1]
                dist = lengths[i-1]
                # 上一节点在第一段圆弧中
                if is_intrace:
                    pre_dazi = azi_o1_in - cur_azi_theta
                    # 上一节点在第一段圆弧,当前节点在第一段圆弧 v3
                    if pre_dazi > d_azi2_o1:
                        is_intrace = 1
                        cur_azi_theta += d_azi2_o1
                        site_and_v[i][0] = o1_x + r1 * np.cos(cur_azi_theta)
                        site_and_v[i][1] = o1_y + r1 * np.sin(cur_azi_theta)
                        site_and_v[i][2] = site_and_v[i-1][2]
                        if site_and_v[i][2] > 2.0:
                            print("时间:%d" % t)
                            print("最大速度为%fm/s" % (v_head - 0.01))
                            exit()
                    # 上一节点在第一段圆弧,当前节点在盘入螺旋线 v4
                    else:
                        is_intrace = 0
                        prev_azi_theta = cur_azi_theta
                        prev_x, prev_y, prev_v = site_and_v[i-1]
                        # 计算出当前节点位置
                        min_theta = theta_initial_in
                        max_theta = theta_initial_in + np.pi
                        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                            (max_theta + min_theta) / 2), b * (
                                               max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                            (max_theta + min_theta) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                        while abs(cur_dist - dist) > np.power(10.0, -10):
                            if cur_dist > dist:
                                max_theta = (max_theta + min_theta) / 2
                            else:
                                min_theta = (max_theta + min_theta) / 2
                            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                                (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                                (max_theta + min_theta) / 2)
                            dx = prev_x - cur_x
                            dy = prev_y - cur_y
                            cur_dist = np.hypot(dx, dy)
                        site_and_v[i][0] = cur_x
                        site_and_v[i][1] = cur_y
                        cur_theta = (max_theta + min_theta) / 2

                        # 计算速度
                        k_tangl1 = -1 / np.tan(prev_azi_theta)
                        k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                                np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                        k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                        tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                        tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                        angle_A = np.arctan(tangentA)
                        angle_B = np.arctan(tangentB)
                        cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                        site_and_v[i][2] = cur_v

                        if cur_v > 2.0:
                            print("时间:%d" % t)
                            print("最大速度为%fm/s" % (v_head - 0.01))
                            exit()

                # 上一节点在盘入螺旋线,下一节点在盘入螺旋线 v5
                else:
                    prev_theta = cur_theta
                    prev_x, prev_y, prev_v = site_and_v[i - 1]
                    # 计算出当前节点位置
                    min_theta = cur_theta
                    max_theta = min_theta + np.pi
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (
                                           max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    while abs(cur_dist - dist) > np.power(10.0, -10):
                        if cur_dist > dist:
                            max_theta = (max_theta + min_theta) / 2
                        else:
                            min_theta = (max_theta + min_theta) / 2
                        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                            (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                            (max_theta + min_theta) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y
                    cur_theta = (max_theta + min_theta) / 2

                    # 计算速度
                    k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (
                                np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
                    k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                                np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v
                    if cur_v > 2.0:
                        print("时间:%d" % t)
                        print("最大速度为%fm/s" % (v_head - 0.01))
                        exit()
        # 龙头进入第二段圆弧
        elif t <= all_t_o1 + all_t_o2:
            print("龙头进入第二段圆弧 %d" % t)
            cur_azi_theta = azi_o2_in + v_head * (t-all_t_o1) / r2
            site_and_v[0][0] = o2_x + r2 * np.cos(cur_azi_theta)
            site_and_v[0][1] = o2_y + r2 * np.sin(cur_azi_theta)
            site_and_v[0][2] = v_head
            is_intrace2 = 1
            is_intrace1 = 0
            dist = lengths[0]
            pre_dazi2 = cur_azi_theta - azi_o2_in
            # 第一节点在第二段圆弧,第二节点在第二段圆弧 v6
            if pre_dazi2 > d_azi1_o2:
                is_intrace2 = 1
                is_intrace1 = 0
                cur_azi_theta -= d_azi1_o2
                site_and_v[1][0] = o2_x + r2 * np.cos(cur_azi_theta)
                site_and_v[1][1] = o2_y + r2 * np.sin(cur_azi_theta)
                site_and_v[1][2] = v_head
                if v_head > 2.0:
                    print("时间:%d" % t)
                    print("最大速度为%fm/s" % (v_head - 0.01))
                    exit()
            # 第一节点在第二段圆弧,第二节点在第一段圆弧 v7
            else:
                is_intrace2 = 0
                is_intrace1 = 1
                prev_azi_theta = cur_azi_theta
                prev_x, prev_y, prev_v = site_and_v[0]
                # 计算出当前节点位置
                min_azi = azi_o1_out
                max_azi = azi_o1_in
                cur_x, cur_y = o1_x + r1 * np.cos((min_azi+max_azi)/2), o1_y + r1 * np.sin((min_azi+max_azi)/2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                while abs(cur_dist - dist) > np.power(10.0, -10):
                    if cur_dist > dist:
                        max_azi = (max_azi + min_azi) / 2
                    else:
                        min_azi = (max_azi + min_azi) / 2
                    cur_x, cur_y = o1_x + r1 * np.cos((min_azi+max_azi)/2), o1_y + r1 * np.sin((min_azi+max_azi)/2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                site_and_v[1][0] = cur_x
                site_and_v[1][1] = cur_y
                cur_azi_theta = (max_azi + min_azi) / 2

                # 计算速度
                k_tangl1 = -1 / np.tan(cur_azi_theta)
                k_tangl2 = -1 / np.tan(prev_azi_theta)
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[1][2] = cur_v
                if cur_v > 2.0:
                    print("时间:%d" % t)
                    print("最大速度为%fm/s" % (v_head - 0.01))
                    exit()

            for i in range(2, dragon_sections+1):
                dist = lengths[i-1]
                prev_x, prev_y, prev_v = site_and_v[i-1]
                # 上一节点在第二段圆弧
                if is_intrace2:
                    pre_dazi2 = cur_azi_theta - azi_o2_in
                    # 上一节点在第二段圆弧,当前节点在第二段圆弧 v8
                    if pre_dazi2 > d_azi2_o2:
                        is_intrace2 = 1
                        is_intrace1 = 0
                        cur_azi_theta -= d_azi2_o2
                        site_and_v[i][0] = o2_x + r2 * np.cos(cur_azi_theta)
                        site_and_v[i][1] = o2_y + r2 * np.sin(cur_azi_theta)
                        site_and_v[i][2] = site_and_v[i-1][2]
                        if site_and_v[i][2] > 2.0:
                            print("时间:%d" % t)
                            print("最大速度为%fm/s" % (v_head - 0.01))
                            exit()
                    # 上一节点在第二段圆弧,当前节点在第一段圆弧 v9
                    else:
                        is_intrace2 = 0
                        is_intrace1 = 1
                        prev_azi_theta = cur_azi_theta
                        prev_x, prev_y, prev_v = site_and_v[i-1]
                        # 计算出当前节点位置
                        min_azi = azi_o1_out
                        max_azi = azi_o1_in
                        cur_x, cur_y = o1_x + r1 * np.cos((min_azi + max_azi) / 2), o1_y + r1 * np.sin(
                            (min_azi + max_azi) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                        while abs(cur_dist - dist) > np.power(10.0, -10):
                            if cur_dist > dist:
                                max_azi = (max_azi + min_azi) / 2
                            else:
                                min_azi = (max_azi + min_azi) / 2
                            cur_x, cur_y = o1_x + r1 * np.cos((min_azi + max_azi) / 2), o1_y + r1 * np.sin(
                                (min_azi + max_azi) / 2)
                            dx = prev_x - cur_x
                            dy = prev_y - cur_y
                            cur_dist = np.hypot(dx, dy)
                        site_and_v[i][0] = cur_x
                        site_and_v[i][1] = cur_y
                        cur_azi_theta = (max_azi + min_azi) / 2

                        # 计算速度
                        k_tangl1 = -1 / np.tan(prev_azi_theta)
                        k_tangl2 = -1 / np.tan(cur_azi_theta)
                        k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                        tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                        tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                        angle_A = np.arctan(tangentA)
                        angle_B = np.arctan(tangentB)
                        cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                        site_and_v[i][2] = cur_v
                        if cur_v > 2.0:
                            print("时间:%d" % t)
                            print("最大速度为%fm/s" % (v_head - 0.01))
                            exit()

                # 上一节点在第一段圆弧
                elif is_intrace1:
                    prev_azi_theta = cur_azi_theta
                    pre_dazi1 = azi_o1_in - cur_azi_theta
                    # 上一节点在第一段圆弧,当前节点在第一段圆弧 v10
                    if pre_dazi1 > d_azi2_o1:
                        is_intrace1 = 1
                        is_intrace2 = 0
                        cur_azi_theta += d_azi2_o1
                        site_and_v[i][0] = o1_x + r1 * np.cos(cur_azi_theta)
                        site_and_v[i][1] = o1_y + r1 * np.sin(cur_azi_theta)
                        site_and_v[i][2] = site_and_v[i-1][2]
                        if  site_and_v[i-1][2] > 2.0:
                            print("时间:%d" % t)
                            print("最大速度为%fm/s" % (v_head - 0.01))
                            exit()
                    # 上一节点在第一段圆弧,当前节点在盘入螺旋线 v11
                    else:
                        is_intrace1 = 0
                        is_intrace2 = 0
                        prev_azi_theta = cur_azi_theta
                        prev_x, prev_y, prev_v = site_and_v[i - 1]
                        # 计算出当前节点位置
                        min_theta = theta_initial_in
                        max_theta = theta_initial_in + np.pi
                        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                            (max_theta + min_theta) / 2), b * (
                                               max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                            (max_theta + min_theta) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                        while abs(cur_dist - dist) > np.power(10.0, -10):
                            if cur_dist > dist:
                                max_theta = (max_theta + min_theta) / 2
                            else:
                                min_theta = (max_theta + min_theta) / 2
                            cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                                (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                                (max_theta + min_theta) / 2)
                            dx = prev_x - cur_x
                            dy = prev_y - cur_y
                            cur_dist = np.hypot(dx, dy)
                        site_and_v[i][0] = cur_x
                        site_and_v[i][1] = cur_y
                        cur_theta = (max_theta + min_theta) / 2

                        # 计算速度
                        k_tangl1 = -1 / np.tan(prev_azi_theta)
                        k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                                np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                        k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                        tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                        tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                        angle_A = np.arctan(tangentA)
                        angle_B = np.arctan(tangentB)
                        cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                        site_and_v[i][2] = cur_v
                        if cur_v > 2.0:
                            print("时间:%d" % t)
                            print("最大速度为%fm/s" % (v_head - 0.01))
                            exit()

                # 上一节点在盘入螺旋线,当前节点在盘入螺旋线 v12
                else:
                    is_intrace1 = 0
                    is_intrace2 = 0
                    prev_theta = cur_theta
                    prev_x, prev_y, prev_v = site_and_v[i - 1]
                    # 计算出当前节点位置
                    min_theta = cur_theta
                    max_theta = min_theta + np.pi
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (
                                           max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    while abs(cur_dist - dist) > np.power(10.0, -10):
                        if cur_dist > dist:
                            max_theta = (max_theta + min_theta) / 2
                        else:
                            min_theta = (max_theta + min_theta) / 2
                        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                            (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                            (max_theta + min_theta) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y
                    cur_theta = (max_theta + min_theta) / 2

                    # 计算速度
                    k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (
                            np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
                    k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                            np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v
                    if cur_v > 2.0:
                        print("时间:%d" % t)
                        print("最大速度为%fm/s" % (v_head - 0.01))
                        exit()

        # 龙头进入盘出螺旋线
        else:
            print("龙头进入盘出螺旋线 %d" % t)
            for i in range(100000):
                dtheta = v_head / 100000 * (t - all_t_o1 - all_t_o2) / r
                head_theta += dtheta
                r = b * (head_theta + np.pi) / 2 / np.pi
            time_used = t
            break
    for t in range(time_used, time_steps+1):
        print("龙头进入盘出螺旋线 %d" % t)
        site_and_v[0][0] = r * np.cos(head_theta)
        site_and_v[0][1] = r * np.sin(head_theta)
        site_and_v[0][2] = v_head
        dist = lengths[0]
        is_intrace3 = 1
        is_intrace2 = 0
        is_intrace1 = 0
        prev_x, prev_y, prev_v = site_and_v[0]
        theta_out = head_theta
        # 第一节点在盘出螺旋线,第二节点在盘出螺旋线 v13
        if theta_out > theta_out_head:
            print("第一节点在盘出螺旋线,第二节点在盘出螺旋线 %d" % t)
            prev_theta = head_theta
            is_intrace3 = 1
            is_intrace2 = 0
            is_intrace1 = 0
            max_theta = head_theta
            min_theta = max_theta - np.pi
            cur_x, cur_y = b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.cos((max_theta + min_theta) / 2), b * (
                        (max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.sin((max_theta + min_theta) / 2)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
            while abs(cur_dist - dist) > np.power(10.0, -10):
                if cur_dist > dist:
                    min_theta = (max_theta + min_theta) / 2
                else:
                    max_theta = (max_theta + min_theta) / 2
                cur_x, cur_y = b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.cos((max_theta + min_theta) / 2), b * (
                        (max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.sin((max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
            site_and_v[1][0] = cur_x
            site_and_v[1][1] = cur_y
            cur_theta = (min_theta + max_theta) / 2

            # 计算速度
            k_tangl1 = (np.sin(prev_theta) + (prev_theta + np.pi) * np.cos(prev_theta)) / (
                        np.cos(prev_theta) - (prev_theta+np.pi) * np.sin(prev_theta))
            k_tangl2 = (np.sin(cur_theta) + (cur_theta+np.pi) * np.cos(cur_theta)) / (
                        np.cos(cur_theta) - (cur_theta+np.pi) * np.sin(cur_theta))
            k_sec = (cur_y - prev_y) / (cur_x - prev_x)
            tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
            tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
            angle_A = np.arctan(tangentA)
            angle_B = np.arctan(tangentB)
            cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
            site_and_v[1][2] = cur_v
            if cur_v > 2.0:
                print("时间:%d" % t)
                print("最大速度为%fm/s" % (v_head - 0.01))
                exit()
        # 第一节点在盘出螺旋线,第二节点在第二段圆弧 v14
        else:
            print("第一节点在盘出螺旋线,第二节点在第二段圆弧 %d" % t)
            prev_theta = head_theta
            prev_x,prev_y,prev_v = site_and_v[0]
            is_intrace3 = 0
            is_intrace2 = 1
            is_intrace1 = 0
            min_azi = azi_o2_in
            max_azi = 2 * np.pi + azi_o2_out
            cur_azi_theta = (min_azi + max_azi) / 2
            cur_x, cur_y = o2_x + r2 * np.cos(cur_azi_theta), o2_y + r2 * np.sin(
                cur_azi_theta)
            dx = prev_x - cur_x
            dy = prev_y - cur_y
            cur_dist = np.hypot(dx, dy)
            while abs(cur_dist - dist) > np.power(10.0, -10):
                if cur_dist > dist:
                    min_azi = (max_azi + min_azi) / 2
                else:
                    max_azi = (max_azi + min_azi) / 2
                cur_azi_theta = (min_azi + max_azi) / 2
                cur_x, cur_y = o2_x + r2 * np.cos(cur_azi_theta), o2_y + r2 * np.sin(
                    cur_azi_theta)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
            site_and_v[1][0] = cur_x
            site_and_v[1][1] = cur_y

            # 计算速度
            k_tangl1 = (np.sin(prev_theta) + (prev_theta + np.pi) * np.cos(prev_theta)) / (
                    np.cos(prev_theta) - (prev_theta + np.pi) * np.sin(prev_theta))
            k_tangl2 = -1 / np.tan(cur_azi_theta)
            k_sec = (cur_y - prev_y) / (cur_x - prev_x)
            tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
            tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
            angle_A = np.arctan(tangentA)
            angle_B = np.arctan(tangentB)
            cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
            site_and_v[1][2] = cur_v
            if cur_v > 2.0:
                print("时间:%d" % t)
                print("最大速度为%fm/s" % (v_head - 0.01))
                exit()
        for i in range(2, dragon_sections + 1):
            dist = lengths[i - 1]
            prev_x, prev_y, prev_v = site_and_v[i-1]
            # 上一节点在盘出螺旋线
            if is_intrace3:
                theta_out = cur_theta
                prev_theta = cur_theta
                # 上一节点在盘出螺旋线,当前节点在盘出螺旋线 v15
                if theta_out > theta_out_body:
                    print("上一节点 %d 在盘出螺旋线,当前节点 %d 在盘出螺旋线 %d" % (i-1, i, t))
                    is_intrace3 = 1
                    is_intrace2 = 0
                    is_intrace1 = 0
                    max_theta = cur_theta
                    min_theta = max_theta - np.pi
                    cur_x, cur_y = b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.cos(
                        (max_theta + min_theta) / 2), b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    while abs(cur_dist - dist) > np.power(10.0, -10):
                        if cur_dist > dist:
                            min_theta = (max_theta + min_theta) / 2
                        else:
                            max_theta = (max_theta + min_theta) / 2
                        cur_x, cur_y = b * ((max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.cos(
                            (max_theta + min_theta) / 2), b * (
                                               (max_theta + min_theta) / 2 + np.pi) / 2 / np.pi * np.sin(
                            (max_theta + min_theta) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y
                    cur_theta = (max_theta + min_theta) / 2

                    # 计算速度
                    k_tangl1 = (np.sin(prev_theta) + (prev_theta + np.pi) * np.cos(prev_theta)) / (
                            np.cos(prev_theta) - (prev_theta + np.pi) * np.sin(prev_theta))
                    k_tangl2 = (np.sin(cur_theta) + (cur_theta + np.pi) * np.cos(cur_theta)) / (
                            np.cos(cur_theta) - (cur_theta + np.pi) * np.sin(cur_theta))
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v
                    if cur_v > 2.0:
                        print("时间:%d" % t)
                        print("最大速度为%fm/s" % (v_head - 0.01))
                        exit()
                # 上一节点在盘出螺旋线,当前节点在第二段圆弧 v16
                else:
                    print("上一节点 %d 在盘出螺旋线,当前节点 %d 在第二段圆弧 %d" % (i-1, i, t))
                    is_intrace3 = 0
                    is_intrace2 = 1
                    is_intrace1 = 0
                    prev_theta = cur_theta
                    min_azi = azi_o2_in
                    max_azi = 2 * np.pi + azi_o2_out
                    cur_azi_theta = (min_azi + max_azi) / 2
                    cur_x, cur_y = o2_x + r2 * np.cos(cur_azi_theta), o2_y + r2 * np.sin(
                        cur_azi_theta)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    while abs(cur_dist - dist) > np.power(10.0, -10):
                        if cur_dist > dist:
                            min_azi = (max_azi + min_azi) / 2
                        else:
                            max_azi = (max_azi + min_azi) / 2
                        cur_azi_theta = (min_azi + max_azi) / 2
                        cur_x, cur_y = o2_x + r2 * np.cos(cur_azi_theta), o2_y + r2 * np.sin(
                            cur_azi_theta)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y

                    # 计算速度
                    k_tangl1 = (np.sin(prev_theta) + (prev_theta + np.pi) * np.cos(prev_theta)) / (
                            np.cos(prev_theta) - (prev_theta + np.pi) * np.sin(prev_theta))
                    k_tangl2 = -1 / np.tan(cur_azi_theta)
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v
                    if cur_v > 2.0:
                        print("时间:%d" % t)
                        print("最大速度为%fm/s" % (v_head - 0.01))
                        exit()

            # 上一节点在第二段圆弧
            elif is_intrace2:
                pre_dazi2 = cur_azi_theta - azi_o2_in
                # 上一节点在第二段圆弧,当前节点在第二段圆弧 v17
                if pre_dazi2 > d_azi2_o2:
                    print("上一节点 %d 在第二段圆弧,当前节点 %d 在第二段圆弧 %d" % (i-1, i, t))
                    is_intrace3 = 0
                    is_intrace2 = 1
                    is_intrace1 = 0
                    cur_azi_theta -= d_azi2_o2
                    site_and_v[i][0] = o2_x + r2 * np.cos(cur_azi_theta)
                    site_and_v[i][1] = o2_y + r2 * np.sin(cur_azi_theta)
                    site_and_v[i][2] = site_and_v[i-1][2]
                    if site_and_v[i-1][2] > 2.0:
                        print("时间:%d" % t)
                        print("最大速度为%fm/s" % (v_head - 0.01))
                        exit()
                # 上一节点在第二段圆弧,当前节点在第一段圆弧 v18
                else:
                    print("上一节点 %d 在第二段圆弧,当前节点 %d 在第一段圆弧 %d" % (i-1, i, t))
                    is_intrace3 = 0
                    is_intrace2 = 0
                    is_intrace1 = 1
                    prev_azi_theta = cur_azi_theta
                    prev_x, prev_y, prev_v = site_and_v[i - 1]
                    # 计算出当前节点位置
                    min_azi = azi_o1_out
                    max_azi = azi_o1_in
                    cur_x, cur_y = o1_x + r1 * np.cos((min_azi + max_azi) / 2), o1_y + r1 * np.sin(
                        (min_azi + max_azi) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    times = 0
                    while abs(cur_dist - dist) > np.power(10.0, -5):
                        if cur_dist > dist:
                            max_azi = (max_azi + min_azi) / 2
                        else:
                            min_azi = (max_azi + min_azi) / 2
                        cur_x, cur_y = o1_x + r1 * np.cos((min_azi + max_azi) / 2), o1_y + r1 * np.sin(
                            (min_azi + max_azi) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                        times += 1
                        if times <= 100 and t == 17:
                            print(cur_dist, min_azi, max_azi, sep=' ')
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y
                    cur_azi_theta = (max_azi + min_azi) / 2

                    # 计算速度
                    k_tangl1 = -1 / np.tan(prev_azi_theta)
                    k_tangl2 = -1 / np.tan(cur_azi_theta)
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v
                    if cur_v > 2.0:
                        print("时间:%d" % t)
                        print("最大速度为%fm/s" % (v_head - 0.01))
                        exit()

            # 上一节点在第一段圆弧
            elif is_intrace1:
                pre_dazi1 = azi_o1_in - cur_azi_theta
                # 上一节点在第一段圆弧,当前节点在第一段圆弧 v19
                if pre_dazi1 > d_azi2_o1:
                    print("上一节点 %d 在第一段圆弧,当前节点 %d 在第一段圆弧 %d" % (i-1, i, t))
                    is_intrace3 = 0
                    is_intrace1 = 1
                    is_intrace2 = 0
                    cur_azi_theta += d_azi2_o1
                    site_and_v[i][0] = o1_x + r1 * np.cos(cur_azi_theta)
                    site_and_v[i][1] = o1_y + r1 * np.sin(cur_azi_theta)
                    site_and_v[i][2] = site_and_v[i-1][2]
                    if site_and_v[i-1][2] > 2.0:
                        print("时间:%d" % t)
                        print("最大速度为%fm/s" % (v_head - 0.01))
                        exit()
                # 上一节点在第一段圆弧,当前节点在盘入螺旋线 v20
                else:
                    print("上一节点 %d 在第一段圆弧,当前节点 %d 在盘入螺旋线 %d" % (i-1, i, t))
                    is_intrace1 = 0
                    is_intrace2 = 0
                    is_intrace3 = 0
                    prev_azi_theta = cur_azi_theta
                    prev_x, prev_y, prev_v = site_and_v[i - 1]
                    # 计算出当前节点位置
                    min_theta = theta_initial_in
                    max_theta = theta_initial_in + np.pi
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (
                                           max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                    while abs(cur_dist - dist) > np.power(10.0, -10):
                        if cur_dist > dist:
                            max_theta = (max_theta + min_theta) / 2
                        else:
                            min_theta = (max_theta + min_theta) / 2
                        cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                            (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                            (max_theta + min_theta) / 2)
                        dx = prev_x - cur_x
                        dy = prev_y - cur_y
                        cur_dist = np.hypot(dx, dy)
                    site_and_v[i][0] = cur_x
                    site_and_v[i][1] = cur_y
                    cur_theta = (max_theta + min_theta) / 2

                    # 计算速度
                    k_tangl1 = -1 / np.tan(prev_azi_theta)
                    k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                    k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                    tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                    tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                    angle_A = np.arctan(tangentA)
                    angle_B = np.arctan(tangentB)
                    cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                    site_and_v[i][2] = cur_v
                    if cur_v > 2.0:
                        print("时间:%d" % t)
                        print("最大速度为%fm/s" % (v_head - 0.01))
                        exit()
            # 上一节点在盘入螺旋线,当前节点在盘入螺旋线 v21
            else:
                print("上一节点 %d 在盘入螺旋线,当前节点 %d 在盘入螺旋线 %d" % (i-1, i, t))
                is_intrace1 = 0
                is_intrace2 = 0
                is_intrace3 = 0
                prev_theta = cur_theta
                prev_x, prev_y, prev_v = site_and_v[i - 1]
                # 计算出当前节点位置
                min_theta = cur_theta
                max_theta = min_theta + np.pi
                cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                    (max_theta + min_theta) / 2), b * (
                                       max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                    (max_theta + min_theta) / 2)
                dx = prev_x - cur_x
                dy = prev_y - cur_y
                cur_dist = np.hypot(dx, dy)
                while abs(cur_dist - dist) > np.power(10.0, -10):
                    if cur_dist > dist:
                        max_theta = (max_theta + min_theta) / 2
                    else:
                        min_theta = (max_theta + min_theta) / 2
                    cur_x, cur_y = b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.cos(
                        (max_theta + min_theta) / 2), b * (max_theta + min_theta) / 2 / (2 * np.pi) * np.sin(
                        (max_theta + min_theta) / 2)
                    dx = prev_x - cur_x
                    dy = prev_y - cur_y
                    cur_dist = np.hypot(dx, dy)
                site_and_v[i][0] = cur_x
                site_and_v[i][1] = cur_y
                cur_theta = (max_theta + min_theta) / 2

                # 计算速度
                k_tangl1 = (np.sin(prev_theta) + prev_theta * np.cos(prev_theta)) / (
                            np.cos(prev_theta) - prev_theta * np.sin(prev_theta))
                k_tangl2 = (np.sin(cur_theta) + cur_theta * np.cos(cur_theta)) / (
                            np.cos(cur_theta) - cur_theta * np.sin(cur_theta))
                k_sec = (cur_y - prev_y) / (cur_x - prev_x)
                tangentA = (k_sec - k_tangl1) / (1.0 + k_sec * k_tangl1)
                tangentB = (k_tangl2 - k_sec) / (1.0 + k_tangl2 * k_sec)
                angle_A = np.arctan(tangentA)
                angle_B = np.arctan(tangentB)
                cur_v = abs(prev_v * np.cos(angle_A) / np.cos(angle_B))
                site_and_v[i][2] = cur_v
                if cur_v > 2.0:
                    print("时间:%d" % t)
                    print("最大速度为%fm/s" % (v_head - 0.01))
                    exit()

        for i in range(10000):
            dtheta = v_head / 10000 / r
            head_theta += dtheta
            r = b * (head_theta + np.pi) / 2 / np.pi


\end{verbatim}



\section{附录:caculateangle.py}
你也可以在这里放置代码,例如:
\begin{verbatim}
import numpy as np


def angle_head():
    b = 1.7
    dist = 2.86
    theta = 73 * np.pi / 17
    prev_x, prev_y = b * (theta + np.pi) / 2 / np.pi * np.cos(theta), b * (theta + np.pi) / 2 / np.pi * np.sin(theta)
    min_theta = theta
    max_theta = min_theta + np.pi
    cur_theta = (min_theta + max_theta) / 2
    cur_x, cur_y = b * (cur_theta + np.pi) / 2 / np.pi * np.cos(cur_theta), b * (cur_theta + np.pi) / 2 / np.pi * np.sin(cur_theta)
    dx = prev_x - cur_x
    dy = prev_y - cur_y
    cur_dist = np.hypot(dx, dy)
    while abs(cur_dist-dist) > np.power(10.0, -10):
        if cur_dist > dist:
            max_theta = (min_theta + max_theta) / 2
        else:
            min_theta = (min_theta + max_theta) / 2
        cur_theta = (min_theta + max_theta) / 2
        cur_x, cur_y = b * (cur_theta + np.pi) / 2 / np.pi * np.cos(cur_theta), b * (
                    cur_theta + np.pi) / 2 / np.pi * np.sin(cur_theta)
        dx = prev_x - cur_x
        dy = prev_y - cur_y
        cur_dist = np.hypot(dx, dy)
    return cur_theta


def angle_body():
    b = 1.7
    dist = 1.65
    theta = 73 * np.pi / 17
    prev_x, prev_y = b * (theta + np.pi) / 2 / np.pi * np.cos(theta), b * (theta + np.pi) / 2 / np.pi * np.sin(theta)
    min_theta = theta
    max_theta = min_theta + np.pi
    cur_theta = (min_theta + max_theta) / 2
    cur_x, cur_y = b * (cur_theta + np.pi) / 2 / np.pi * np.cos(cur_theta), b * (
                cur_theta + np.pi) / 2 / np.pi * np.sin(cur_theta)
    dx = prev_x - cur_x
    dy = prev_y - cur_y
    cur_dist = np.hypot(dx, dy)
    while abs(cur_dist - dist) > np.power(10.0, -10):
        if cur_dist > dist:
            max_theta = (min_theta + max_theta) / 2
        else:
            min_theta = (min_theta + max_theta) / 2
        cur_theta = (min_theta + max_theta) / 2
        cur_x, cur_y = b * (cur_theta + np.pi) / 2 / np.pi * np.cos(cur_theta), b * (
                cur_theta + np.pi) / 2 / np.pi * np.sin(cur_theta)
        dx = prev_x - cur_x
        dy = prev_y - cur_y
        cur_dist = np.hypot(dx, dy)
    return cur_theta

\end{verbatim}

\end{document}